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Abstract
Theories of non-equilibrium strategic thinking (e.g. Level-k and Cognitive Hierarchy)

intend to describe how individuals actually behave. But how much of their descriptive
accuracy is driven by being more permissive theories? We modify Selten [1991] axiomatic
measure of predictive success to ensure individual consistency. By applying restrictions
over observables to the individual data (echoing the revealed preference literature), we test
the necessary and sufficient conditions of these theories and quantify the economic losses
for deviations from the theory. The non-parametric results are favourable for these theories
and show that their predictive success is not mechanically due to their permissiveness.
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1 Introduction
There is increasing interest in how individuals actually reason in strategic situations. As
a result of a body of evidence showing that the traditional concept of equilibrium fail to
explain strategic behaviour (Camerer [2003]), this interest has translated into theories of (non-
equilibrium) strategic thinking (Crawford et al. [2013]), where the rationality of players is not
common knowledge. In models of this kind, players are categorized into types according to
their reasoning level. An exogenous non-strategic type 0 will be the starting point for beliefs
and behaviour of higher types. For example, one commonly used model of strategic thinking,
Level-k (Nagel [1995], Stahl and Wilson [1995], Costa-Gomes and Crawford [2006]), pictures
a type k best-responding only to a type k − 1 player. So, type 1 best responds to type 0
choices, type 2 best responds to type 1 choices and so on. The related Cognitive Hierarchy
(Camerer et al. [2004]) imposes a normalized Poisson distribution of lower types. So, type 1
best responds to type 0 choices, type 2 best responds to a (normalized Poisson) probability
mix of type 0 and type 1 choices and so on. More generally, in a model of strategic thinking,
a type k best responds to a convex combination of the choices of lower types. The only source
for variations in predictions between models of strategic thinking arises due to the additional
assumptions about this convex combination of lower types.

In this paper, we exploit that difference and provide a method to test the necessary and
sufficient conditions of any given model of strategic thinking non-parametrically. Furthermore,
using Selten [1991] index, we also evaluate the predictive success of a model, and correct
the resulting passing rates of our test by incorporating the permissiveness of the model (i.e.
how easy passing the test is for that particular model). Using this method, we evaluate the
predictive success of Level-k, Cognitive Hierarchy and compare them with the most general
model of strategic thinking, where no additional assumptions are imposed. This general model
provides an upper bound for the predictive success of the theory of strategic thinking as a
whole. Like previous results, we show that current models of strategic thinking are predictive
compared to equilibrium. Furthermore, we are able to show that this predictive success is not
mechanically due to being more permissive theories. More importantly, the upper bound of
the strategic thinking theory does not cover all behaviour but the behaviour explained by the
general model appears not to be statistically different from Level-k and Cognitive Hierarchy,
when allowing for a small amount of errors.

The existing literature does not provide an evaluation of the predictive success for two
reasons. First, current tests of Level-k and Cognitive Hierarchy are, at best, a joint test of
the theory being right and some ancillary assumption. For example, many papers estimate
competing models via maximum likelihood (e.g. Quantal Responses Equilibrium vs. Level-k)
and see whether strategic thinking theories fit better (see Crawford et al. [2013] for a review).
In many of these applications, extraneous and particular assumptions about noise need to be
introduced because an observed action not predicted by the theory is enough to make the value
of the likelihood function equal to 0 (uninformative). This problem of presenting joint tests also
affects experimental designs developing some ex-ante testable hypothesis. Hargreaves Heap
et al. [2014] present a test in which either the theory is wrong or the non-strategic type 0
depends on the strategic components of the game. Ideally, we would like a method precise
enough to test the necessary and sufficient conditions of strategic thinking models and, at the
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same time, flexible enough to test any potential model of strategic thinking.
Second, even if one were to take the results of these tests as prima facie evidence, alter-

native models of strategic thinking vary in terms of their permissiveness and, consequently, it
should not be surprising that more permissive models mechanically describe behaviour better.
There is no control for permissiveness in previous tests but we could form intuitive opinions
about this trade-off. In some existing experiments using 3 x 3 normal form games, every
possible choice is consistent with some type while, in other experiments, few choices would
be predicted by any type (in particular, Level-k tests by Costa-Gomes and Crawford [2006],
Fragiadakis et al. [2016]). If predictive success is taken seriously, however, we need a method
producing a systematic evaluation rather than appealing to intuitions. The closest paper in
this direction is Wright and Leyton-Brown [In Press] who use machine learning techniques to
evaluate out-of-sample predictions of some strategic thinking models and look at the number
of parameters of these models as a measure of permissiveness. Our main concern is that this
definition of permissiveness can mislead evaluations. For example, Level-k would estimate k−1
parameters while Cognitive Hierarchy requires to estimate the parameter governing the Pois-
son distribution. However, as a consequence of that parameter, there are infinitely many more
admissible distribution of lower levels in Cognitive Hierarchy than in Level-k, which may result
into a larger set of predicted outcomes, depending on the game. We argue that, in line with
methods coming from social sciences (Selten [1991]), a more appropriate method to account
for permissiveness should evaluate how many of outcomes are consistent with the model (and
the respective combinations of parameters) out of all possible outcomes.

In order to address these two problems, the method in this paper essentially represents the
utility implications of every actual choice according to a particular candidate model (and its
admissible distributions of lower types) into a system of inequalities –– in the same fashion
as Afriat [1972]. More concretely, for every observation, the utility associated to the observed
choice must have been at least as high as the utility associated to every other alternative,
according to that candidate model. Notice that if this condition is satisfied for the best-
responses set, it will be necessarily satisfied for every other alternative. Thus, we can show
that the candidate model is consistent with the observed behaviour if and only if the resulting
system of inequalities has a solution. As a result, we test the necessary and sufficient conditions
for the candidate model. Furthermore, as different models of strategic thinking only differ in
the probabilities associated to lower types (and their associated actions) and these probabilities
enter naturally in the calculation of the expected utility of a particular type, the method is
flexible enough to test any alternative model of strategic thinking.

To evaluate predictive success, we follow Beatty and Crawford [2011] and their implemen-
tation of the measure of predictive success, built on the desirable properties proposed by Selten
[1991]. In their paper, the fraction of individuals whose choices pass the test of the model are
corrected by how easy passing the test was for that particular model. This ease to pass the
test is measured by the relative size of the datasets consistent with the model with respect to
all possible datasets that could have emerged. As Bronars [1987] noticed, this relative measure
is inversely related to the power of the test of the model under the alternative hypothesis of
uniformly random behaviour. Beatty and Crawford [2011] apply this method on demand data
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and there is, at least, one important reason to adjust it to our game theory application.1 By
requiring that every individual choice is consistent with one particular type – rather than, for
example, every individual choice being consistent with some type, we address concerns that
appear in other implementations of the Selten measure of predictive success.2

As currently stands, the virtue of testing the necessary and sufficient conditions is also a
limitation of our test in the presence of errors. One single error of any size is enough for an
individual to fail the test. Consequently, the test can be too stringent. Fortunately, we can
modify the system of inequalities by introducing an error parameter that decreases the payoff
associated to the best responses of the model. By doing so, we can recover the lowest error
ensuring that the system of inequalities is satisfied for the observed choices given a a particular
model – in line with the ideas of the critical cost efficiency index (Afriat [1973]), or the less
restrictive alternative by Varian [1990]. Thus, we can attribute an economic interpretation to
this error parameter as the efficiency loss for deviations from the model.

We apply our method to the experimental data from Fragiadakis et al. [2017], which satisfy
three conditions. First, we require individuals to make more than one choice in order to be able
to measure individual (in)consistency across choices. Second, due to the theories of strategic
thinking characterising players with a fixed type and distribution over lower types, the data
should not provide opportunities for learning or updating of beliefs about other types.3 Finally,
the restrictions imposed on the observables via the system of inequalities depend exclusively
on the unobserved theories of strategic thinking and, consequently, other commonly accepted
sources of variation related to utility function (e.g. risk preferences and social preferences)
need to be minimized. In particular, Fragiadakis et al. [2017] satisfy these conditions by
having subjects in their experiment play a series of games without feedback between choices
and using the binary lottery incentive mechanism introduced by Roth and Malouf [1979], which
is agnostic about the functional form of the utility as long as utility is monotonically increasing
in probabilities and compound lotteries can be reduced. The games used in their experiment
are a modified version of the 11-20 game (Arad and Rubinstein [2012], Alaoui and Penta
[2016]) that allows separation of types not only for level-k and Cognitive Hierarchy but also
for any general model of strategic thinking. Fragiadakis et al. [2017] design a between-subjects
experiment with an actions treatment to incentivise an elicited beliefs treatment. Their tests
are set to deal with the beliefs data but not with the action data.

The results show that, in the stringent version of the test where no errors are allowed, Level-
1See Polisson et al. [2017] for an application of this implementation on contingency claims.
2Imagine an experiment where subjects make two decisions. In each decision, subjects need to choose an

integer between “1” and “10”. The theory under evaluation predicts “6” and “3” in the first and second decision,
respectively. In that experiment, half of the subjects (Group A) choose “6” in the first decision and numbers
other than “3” in the second decision. The other half of the subjects (Group B) choose “3” in the second decision
but numbers other than “6” in the first decision. Thus, in each decision separately, the theory scores a Selten
index of 0.4 (0.5 due to the fraction of subjects choosing consistently with the theory in that decision minus 0.1
of the precision of the theory in each decision). In many implementations, the Selten index would be averaged
across games. As a result, an index of 0.4 would indicate some predictive success of the theory yet no single
subject in this thought experiment is consistent with the theory - i.e., no subject chooses both numbers, “6”
and “3”.

3In the presence of feedback, learning models are probably more suited to explain the data (see Salmon [2001]
for an evaluation of the power of experimental tests).
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k and Cognitive Hierarchy describe the data better than equilibrium but worse than the general
model. This difference is not significant, however. As soon as we allow subjects to exhibit small
losses of efficiency, separations between the different models start to be significant. In fact,
when we allow an economic loss of, at most, 10% (an arbitrary but conventional threshold),
Equilibrium, Level-k, Cognitive Hierarchy and the generalized version of theories of strategic
thinking can explain 0%, 2.5%, 17.5% and 35% of the subjects’ behaviour, respectively.

These results are robust even after controlling for how easy is for each model to pass our
test. More concretely, the results show that, for efficiency levels close to 1, the likelihood for
these models to pass the test is generally close to 0. The generalized model present a likelihood
of 0.18% for an efficiency loss of 10%. This implies that the power of the test for these theories
is extremely high and close to 1 under the alternative hypothesis of uniformly random choices.

These results and the corresponding inference are based on Afriat’s restrictive index, which
punishes subjects for their worst deviations. Varian’s index, which weighs every mistake
equally, presents qualitatively the same results. Most notably, the frequency of subjects that
can be explained by the theories of strategic thinking increases more rapidly with Varian’s
index and the gap between Level-k and Cognitive Hierarchy, and the general model is smaller.
Furthermore, like with Afriat’s index, these results of the more permissive index cannot be
completely explained simply because of how easy is for these models to pass the test. All in
all, these are good news for existing theories of strategic thinking.

The rest of the paper is organized as follows. Section II describes the method and the
necessary and sufficient conditions of the test for each of the theories. Section III introduces
the application and the details of the implementation of our method. Section IV presents the
results and Section V discusses the wider implications of our method and results.

2 How to measure Predictive Success?
Selten [1991] investigates the desirable properties that a measure of predictive success, p,
should have. He argues that it should appear uncontroversial to calculate p as a function of
two elements. The first element is the hit rate, r ∈ [0, 1], which is defined as the relative
frequency of correct predictions. The second element is the area, a ∈ [0, 1], which is defined
as the relative size of the predicted outcomes with respect to all possible outcomes. Then, he
proposes a list of desirable properties that a candidate functional forms, p(r, a) should satisfy.
For a cardinal characterisation, he proposes the following axioms:4

Monotonicity: p(r1, a) > p(r2, a) for r2 < r1 and p(r, a1) > p(r, a2) for a2 > a1
Equivalence: p(0, 0) = p(1, 1)
Aggregability: p(βr1 + (1− β)r2, βa1 + (1− β)a2) = βp(r1, a1) + (1− β)p(r2, a2)

These axioms have appealing interpretations in the context of finding a measure of pre-
dictive success. The monotonicity axiom states that, ceteris paribus, either a larger r (more
accurate theory) or a smaller a (more precise theory) should lead to an increase of the measure

4Selten [1991] also proposes an alternative ordinal characterization where aggregability is replaced by conti-
nuity and cost-benefit evaluation axioms.
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of predictive success. The equivalence (of irrelevant theories) axiom establishes that a com-
pletely accurate theory with no precision and a completely precise theory with no accuracy
are equally (un)informative. The aggregability axiom allows different experiments to be com-
pared with the same measure. A weighted arithmetic mean, where β = N1

N , 1 − β = N2
N and

N1 +N2 = N , controlling for the different relative sizes of experiments, Ni
N , appears a natural

method to aggregate hit rates. If one accepts this, the aggregability axiom imposes the same
method to be used for the areas and, consequently, for the predictive measures.

Many functional forms satisfy these axioms. Selten and Krischker [1983] advocate for a
very simple functional form which subtracts the area from the hit rate, p = r − a ∈ [−1, 1].
With these axioms and this particular measure p, the following theorem follows.

Theorem (Selten’s Theorem). The function p = r − a ∈ [−1, 1] satisfies monotonicity,
equivalence and aggregability. If the function p̃(r, a) also satisfies these axioms, there exist
γ1 ∈ R, γ2 > 0 ∈ R such that p̃(r, a) = γ1 + γ2 × p.

Proof. See Selten [1991], page 163; and the Appendix in Beatty and Crawford [2011] for an
alternative proof.

If the axioms are accepted to be desirable properties, the Selten index p is a candidate
measure of predictive success because p satisfies those desirable properties. Furthermore, the
second part of the theorem states that every other function satisfying the above axioms can
be expressed as a linear transformation of the simple function p. Arguably, Selten’s Theorem
seems to plead for the use of p = r − a given its simplicity with respect to other candidate
measures.

We are not alone in considering these properties desirable and the Selten index meritorious.
In fact, this measure has been widely applied in the analysis of individual choice data (in
consumer demand: Beatty and Crawford [2011]; in lottery choices: Harless and Camerer
[1994], Hey [1998]; in portfolio choices: Polisson et al. [2017]) and, to a lesser extent, in the
analysis of choices in games (e.g., Van Huyck et al. [1997], Willinger and Ziegelmeyer [2001],
Keser and Willinger [2007], Wang et al. [2010]). The application of this measure differs between
some of the analysis of individual choices and the analysis of choices in games. In particular,
influenced by the revealed preference literature, the application in individual choices have
demanded individual consistency across decisions to claim that the dataset is also consistent
with the theory. In contrast, most applications in games implicitly assume that different choices
correspond to different experiments (even if choices are coming from the same individuals) and,
by aggregability, predictive success is measured as the average Selten index across games.5, 6

By abstracting from individual consistency across decisions, the process of averaging Selten
indexes across games may overstate the predictive success of a theory. This concern can be
easily presented through the following example. Imagine an experiment where subjects make
two decisions. In each decision, subjects need to choose an integer between “1” and “10”. The

5Exceptions are applications on datasets where subjects only make one decision. Applications on these
datasets are uncommon, though (see Gächter and Riedl [2006] for an example).

6There is also a literature applying revealed preference methods to games in order to investigate individual
consistency across decisions according to altruistic preferences (see, e.g., Andreoni et al. [2003],Andreoni and
Miller [2002]) but they do not apply the Selten measure.
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theory under evaluation predicts “6” and “3” in the first and second decision, respectively. In
that experiment, half of the subjects (Group A) choose “6” in the first decision and numbers
other than “3” in the second decision. The other half of the subjects (Group B) choose “3” in
the second decision but numbers other than “6” in the first decision. Thus, in each decision,
the theory scores a Selten index of 0.4 (0.5 due to the fraction of subjects choosing consistently
with the theory in that decision minus 0.1 of the precision of the theory in each decision). As
a result, the average Selten index across games associated to that theory is 0.4. This value
supports the predictive success of the theory yet no single subject in this thought experiment
is completely consistent with the theory - i.e., no subject chooses both numbers, “6” and “3”.

The method proposed below addresses the problem illustrated in this simple example. Cor-
recting overestimation is, however, not our only reason to look at individual consistency across
choices. Not all deviations from the model have the same consequences; and two distinctive
sets of individual choices may present different levels of efficiency (according to the evalu-
ated model). The tests in revealed preferences are expressed in terms of the loss of efficiency
generated by deviations with respect to the model. Incorporating this feature in calculating
the Selten index provides a more economic interpretation to both the meaning of predicting
accurately, r = 1, and to the distance from accurate predictions. The distance from correct
predictions would indicate the economic losses of not choosing completely in line with the
model. This measure of efficiency in our paper is expressed in actual payoffs rather than util-
ity. Following previous expositions, we characterise theories of strategic thinking assuming
players to be risk neutral, whose utility is linear in payoffs. The subsequent application, thus,
requires to implement risk neutrality and the selected experimental data does so.

In the following subsections, we formally define the elements needed to test whether a
dataset involving subjects playing a series of games satisfies the consistency conditions accord-
ing to a strategic thinking theory; and how these elements are used in the construction of the
hit rate and area to evaluate the predictive success of the theory.

2.1 Games and Dataset
We formally define the games that subjects see and how choices in a series of these games lead
to a dataset.

Definition 1. A normal form game, G, is a tuple G =< N, (Si), (πi) >, where N = {i, j} is
the set of two players, Si is a finite set of strategies and πi : Si × Sj → R is the mapping from
strategies to payoffs.

We focus on two player normal form games because they are routinely used in experiments.
In these games, subject i chooses a strategy si ∈ Si and, given the choices of player j, receives
payoff πi. Theories of strategic thinking, as formally defined next, are confined to explain
initial instances of strategic interaction, where the relevant elements to determine choices are
players, strategies and payoffs. These elements are precisely the components of normal form
games. Hence, our method is restricted to these games.

Definition 2. A dataset, O, is a collection of a finite number of T observations such that
O = {(st, Gt)}Tt=1.
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We define a dataset generally but it can be referred to a dataset of individual choices. We
denote this as Oi. In such dataset, the researcher observes player i facing game G and choosing
si ∈ Si in period t, collecting T observations. We test strategic thinking theories in individual
datasets.

2.2 Strategic Thinking Theories
Now, before defining formally theories of strategic thinking, we need to introduce some impor-
tant concepts.

Definition 3. A finite G-based epistemic type space is a tuple < (Ki), (m
i), (ŝji ) > where

Ki = {0, 1, 2..., ki} is the set of types of players, mi : Ki → ∆(Kj) is the mapping from the
type to the distribution of other types, and ŝji : Kj → ∆(Sj) is the (mixed) strategy that a type
of player i, with a type ki, associates to other types.

The type of a player, ki, represents the number of lower types she can compute, as usually
interpreted as an index of cognitive sophistication. Each player i, whose type is ki ∈ Ki, uses
a strategic thinking function, mi, mapping from her type to a discrete distribution of the other
player’s type. Furthermore, the function ŝji assigns a strategy for each type kj by mapping
each type to a probability distribution over the strategy space. Thus, the strategy that a
player of type ki associates to the other player, ŝj(ki), is the compound effect of mi and ŝji .
For convenience, we also include the following definition.

Definition 4. fk(h) ∈ [0, 1] is the proportion of type h that a player of type k believes exists
in the population.

Then, the corresponding expected utility of player i whose type is ki > 0 is defined as:

Πi(si, ki) =
∑
k−i

fk (k−i)Πi (si, ŝj (ki)). (1)

The payoff function depends on the probability of the event of finding other types given a
player’s own type and the payoff associated to those events. We need to define some way in
which a type of player computes that information to reach a choice.

Definition 5. A strategy s̃i (ki) is a best response for type ki > 0 if Π(s̃i, ki) ≥ Π(s′, ki) ∀s′ ∈
Si. The set of best responses is named BR(mi(ki)).

The only remaining issue is to express a theory of strategic thinking as a function mi.
Theories of strategic thinking are comprised of the following list of assumptions:

Assumption 1. Any type ki > 0 player best responds to their beliefs over types.

Assumption 1 states that theories of strategic thinking, unlike other behavioural game
theory models (e.g., Quantal Response Equilibrium), retain optimization and are deterministic.
The results of empirical tests of this assumption are not conclusive. There is positive evidence
(e.g., Rey-Biel [2009]) but it is not universal (e.g., Costa-Gomes and Weizsäcker [2008]). We
discuss further implications of this assumption for the reported results in Section 5.
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Assumption 2. For every type i, the strategy associated to player j whose type is kj = 0,
ŝj (ki) is exogenously given and independent of mi(ki).

Theories of strategic thinking do not include theories about their non-strategic element.
However, two main alternative distributions over strategies for type 0 has been presented –
either a disperse prior represented by a uniform random distribution or a distribution depending
on the particular application.7 In fact, Hargreaves Heap et al. [2014] have argued that the
possibility to select the characterisation of type 0 depending on the application may reduce
the predictive power of these theories. Our method is general enough to accommodate any
characterisation of type 0 but, more importantly, any concern about the predictive success
of the theory depending on type 0 can be controlled in our method through the area of the
theory. The lack of theoretical foundations about type 0 also complicates the comparison
between theories. Nonetheless, if this type is thought to follow a non-strategic, intrinsic reaction
towards the game alone, the second part of Assumption 2 seems natural.

Assumption 3.
∑k−1

h=0 fk(h) = 1.

This assumption has three noticeable features. First, it is another way to restate that
the mapping mi : Ki → ∆(K−i) produces a discrete probability distribution. Second, it
also includes the restriction that a player always believes that other players are lower types.
Otherwise, we face epistemic problems. Finally, the distribution of (lower) types is a convex
combination that sum up to exactly one. Thus, a player believes that everyone else is using
the same mode of reasoning, with a lower type. Strategic thinking theories do not allow the
sum to be lower than 1 – when only a fraction of the population would be explained by the
strategic thinking theory – possibly because this leaves undefined what the mode of reasoning
of the remaining fraction of the population is.

As a result of Assumption 1 – 3, the distribution of higher levels is anchored in a non-
strategic type 0 via the best responses. Theories of strategic thinking differ in the particular
functional form, mi, which imposes restrictions on the proportions for each lower type, fk(h).
We focus on the popular theories, Level-k, henceforth LK (Nagel [1995], Stahl and Wilson
[1995], Costa-Gomes et al. [2001], Costa-Gomes and Crawford [2006]) and Cognitive Hierarchy,
henceforth CH (Camerer et al. [2004]). However, in order to figure out the upper bound of the
predictive success of strategic thinking theories, we also study a generalized version of these
two theories (henceforth GLK).

Definition 6. A function mi is GLK if it satisfies Assumptions 1 - 3 and imposes no further
restrictions.

If one were to accept that theories of strategic thinking satisfy, at a minimum, the afore-
mentioned assumptions, a GLK theory should provide indeed an upper bound to the predictive
success of these theories because it satisfies these assumptions and nothing more. The popular
theories, LK and CH, include the following additional restrictions with respect to GLK.

Assumption 4. fk(k − 1) = 1 (LK assumption)
7We come back to the particular characterisation of type 0 that we use in our application in Section 3.2
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Definition 7. A function mi is LK if it satisfies Assumptions 1 - 4, and imposes no further
restrictions.

In LK, every player whose type is ki assigns all the mass of the distribution of types to
the immediate lower type. As a consequence, by using this restrictive model, it is very easy to
infer the type from the action (Arad and Rubinstein [2012], Georganas et al. [2015]).

Assumption 5. fk (h) =
g(h)∑k−1
l=0 g(l)

(CH assumption)

where g (h) = e−τ×τh

h! is the probability of observing realization h according to a Poisson
distribution with the parameter τ , which is the mean and the variance of the distribution.
Thus, the probability that a type k player believes that the opponent is h is provided by a
normalized Poisson, ensuring that Assumption 3 is met.

Definition 8. A function mi is CH if it satisfies Assumptions 1 - 3 and Assumption 5, and
imposes no further restrictions.

Thus, CH depends exclusively on the parameter τ . A further assumption that we could
impose, in line with others in the literature, is that τ is the same across subjects. This implies
that two types k and k + n share the same g (h) but fk (h) ̸= fk+n (h). As GLK would not
impose a similar restriction and LK would not accept such restriction, we refrain from imposing
this assumption for comparative purpose. Consequently, the reported results in Section 4 will
show an upper bound of the predictive success of CH.

It is straightforward to see that the set of predictions of LK and CH is included in the set
of predictions of GLK. In other words, we should expect the predictions of LK and CH to be
a less accurate description of the data. However, the higher number of assumptions and the
type of assumptions place more restrictions in LK and CH than in GLK. Consequently, we
should also expect that these theories are also more precise. This trade-off can be calculated
using the hit rate and the area.

2.3 Hit Rates, Accuracy, Goodness of fit
The hit rate, r ∈ [0, 1], is the relative frequency of correct predictions. In order to account
for individual consistency and address concerns of over-estimation, we redefine the relative
frequency of correct predictions as the frequency of a subjects whose dataset is rationalizable
by a particular theory of strategic thinking, mi.

Definition 9. The dataset Oi = {(sti, Gt)}Tt=1 is rationalizable by a particular strategic theory
if there exist a ki and a mi such that, a) the assumptions of the strategic theory are satisfied
and, b) Πi(s

t
i, ki) ≥ Πi(s̃

t
i, ki) holds for every alternative strategy s̃ti in every observation t.

Checking for rationalizability is equivalent to checking whether there is a solution to a finite
set of linear inequalities in which what is observed is as good as what the model would predict.
We should notice that we do not need to check every strategy in the set of strategies, s′i ∈ Si,
but only every strategy in the set of best-responses, s′i ∈ BR(mi(ki)) ⊆ Si. If the inequality
above is satisfied for the latter, it is directly implied that it is satisfied for the former. This
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follows directly from the definition of best responses (Definition 5). In fact, if there is a solution
to the system, the definition of best responses implies that the second part of the definition is
true with strict equality. However, when the system is relaxed to allow for errors, the weaker
statement allowing also inequality becomes more meaningful as we will see below.

This idea of checking rationalizability via a set of linear inequalities has a long standing
in economics and is at the core of the revealed preference literature (Samuelson [1938], Afriat
[1967]). In general, we are not placing enough restrictions to identify an individual’s type. Play-
ers with different types and different distributions over types could exhibit the same choices.
Our method is focused on testing whether there exists, at least, one type and one distribution
over types in line with the theory that solves the system of inequalities.8 Furthermore, this
method is computationally feasible and can be solved in a finite number of steps.

One open question is how many types are necessary to verify that the dataset is rational-
izable by a particular theory. The number of types may be limited by the games under study.
For some games, a higher type might not provide a better fit than a lower type after a certain
threshold. For example, in our application, a better fit cannot be generally obtained with
a type higher than 4 because the experimental games are designed to study the empirically
most common types, 0–3 (see Crawford et al. [2013]). In other games where there is no such
restriction, the only drawback of studying an additional type is imposed by the additional
computational time to find whether a solution exists to the different systems of inequalities.9

In spite of this qualification, one of the central advantages of using this framework is that
we obtain a test of the necessary and sufficient conditions of the aforementioned theories. The
truth of this statement can be easily verified. If there is a ki and a mi that solves the system
of inequalities, part a) ensures that this solution is consistent with the theory by definition. If
there is a ki and a mi that it is not a solution, that implies that sti /∈ BR(mi(ki)) ⊆ Si for at
least one observation, which violates Assumption 1 and, therefore, does not qualify as a theory
of strategic thinking as defined above.

Following the example above, imagine that “6” and “3” were the predictions of a theory
of strategic thinking for a particular ki (i.e., the set of best responses for a particular ki).
According to the method above, nobody is consistent with the theory because every subject
violated at least one inequality. Group A violated the inequality associated to the second
decision while Group B violated the one associated to the first decision. So, we obtain r = 0
rather than r = 0.5. In this way, we address the overestimation concern. Now, no violation of
any size is allowed. One minor mistake will make an individual to fail the test of the theory
even if all other choices would have been rationalizable by the theory. As a result, we have
produced a stringent test. Consequently, we may want to modify the method further to account
for and, more importantly, measure deviations from the theory’s predictions.

The revealed preference literature already offers some well-established methods to measure
these deviations (Afriat [1972], Afriat [1973], Varian [1990]). If no ki and a mi solve the
system, we can relax the system and, substituting the expression in b) above for the following
expression Πi

(
sti, ki

)
≥ etΠi

(
s̃ti, ki

)
where et ∈ [0, 1] is the efficiency index. In particular, et is

the relative percentage by which the payoff associated to the best-response needs to be reduced
8See Section 5 for a discussion of Kneeland [2015] and her method to identify orders of rationality.
9Further details of the algorithm applied to our application are presented in section 3.2.
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for the inequality to be satisfied. There may be many reasons behind this loss of efficiency.
One can think of the loss of efficiency as the result of errors committed in implementing the
strategy recommended by the model, individual inability to figure out the correct decision
(according to the model) or just genuine misspecification. For our tests, we need to look for
the highest efficiency index satisfying the inequality, implicitly assuming that subjects deviate
from the model in the less costly manner. Notice that the system is trivially satisfied when
et = 0; and we are back to the stringent test when et = 1.

For each dataset, we generate a vector of the implied efficiency indexes −→e =
(
e1, ...eT

)
.

The stringent test – i.e., the necessary and sufficient condition for the observed dataset to be
consistent with the model – requires that −→e = (1, 1, ..., 1). The closer a vector −→e is to the unit
vector, the lower the distance between the model and the observed dataset. There are two
main methods to aggregate this vector into a single measure.10 Afriat [1972] and Afriat [1973]
propose a conservative measure for the index, ea = min

{
et
}

, which ensures that the whole
system of inequalities is satisfied by choosing the minimum et. As an alternative, Varian [1990]
proposes to focus on the square of the Euclidian distance between −→e and the unit vector,
ev =

∑T
t=1

(
1− et

)2 ∈ [0, T ]. In the application, we focus on Afriat’s index, ea ∈ [0, 1], because
it is more widely used in the empirical literature of revealed preference and, as the hit rate, the
domain of this index is between 0 and 1. The results using Varian’s less conservative ev /∈ [0, 1]
are also presented as a robustness check in Section 4.1.

By relaxing the stringent test in this way, we can see the relationship between the level of
efficiency demanded of individuals and the hit rate. If we require ea = 0, the hit rate is going
to be one. No efficiency is required and every individual dataset is going to be rationalized
trivially. If we increase the demands, fewer individuals are rationalized. In the extreme, we
demand individuals to be completely efficient and we are back to the stringent test, where
ea = 1.

2.4 Area, Precision, Power
Wright and Leyton-Brown [In Press] offer machine learning techniques that account for the
lack of precision of a theory by looking at the number of parameters of the theory. It may be
useful to show why we think that the number of parameters is a narrow definition of precision.
In any application, LK needs k − 1 free parameters because the last one is determined by the
sum of proportion of the others and the number of potential distributions of lower types is
one per type. However, in CH, the single parameter τ governs the Poisson distribution and,
consequently, the relative weights of the different types. Then, it is not necessarily the case
that models with a lower number of parameters are more parsimonious than models with more
parameters.

Take the popular p-beauty contest in which players have to choose a number between
0 and 100 and the winner is the closest number to 2/3 of the average number. With an
uniform random type 0, higher LK types will choose numbers for this game in the series given
by: 50 ∗ (23)

ki where ki = {1, 2, 3, ...}. For example, type 1 and 2 play exactly 33 and 22,
respectively. CH predictions depend on τ and the set of predicted numbers in this game is

10There are other suggestions in the revealed preference literature (see Echenique et al. [2011] and Halevy
et al. [In press]).
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larger than LK’s predictions. For example, it can be easily verified that the range of predicted
numbers of a CH type 2 includes many numbers between 33 and 22, depending on the particular
values of τ . This counter-example suggests that less parameters does not necessarily imply
more parsimony but what would a good measure of parsimony be? 11

The area of a theory, a ∈ [0, 1], is defined as the relative size of the predicted outcomes
with respect to all possible outcomes. So, the importance of this index is not the number
of parameters but the consequence of this parameters in increasing or reducing the relative
size of outcomes that are consistent with the theory of all possible outcomes. Following the
same changes as in the hit rate, a possible outcome should be now redefined as a possible
individual dataset. Then, we should expect

∏T
t=1 | St | possible datasets as the result of an

experiment collecting one strategy in each decision t over a set of strategies whose cardinality
is | St |. Following the example above with two choices, the number of all possible datasets is
100 = 10× 10. Out of these 100 possible datasets, only one dataset is predicted by the theory
(i.e. the one in which 6 and 3 are chosen in the first and second question, respectively).

Effectively, calculating the area implies that we need to verify that the theory can rationalize
a particular dataset (as described above) and that we need to do this for every possible dataset.
Then, the fraction of rationalizable datasets over all possible datasets provides the area of the
theory. Given that the number of possible individual datasets increases exponentially with
each new game, calculating the area in this manner becomes computationally demanding.12

We could, instead, estimate the area as follows. First, we independently drawn datasets
with equal probability and replacement from the universe of all possible datasets. Then, for
each dataset from the sample, we verify that the theory can rationalize that particular dataset.
The estimated area is, then, calculated as the relative size of the predicted datasets with respect
to the drawn datasets. The strong law of large numbers implies that the area calculated using
this method should be equal to the actual area with probability 1 - as the number of datasets
tend to infinity. Any number of datasets that we decide to sample is arbitrary. On one hand, we
want the size of the sample to be big enough so the deviation between estimated and true area
is minimized and, on the other hand, we want the size to be small enough so we can compute
the estimated area within a reasonable amount of time. In our application, we sample 100,000
individual datasets.13

In practice, sampling a dataset is formally equivalent to generating an artificial individual
dataset where the individual makes uniformly random choices in each St. Thus, a different
interpretation for this process is commonly used in the revealed preference literature - first
described by Bronars [1987]. We should notice that 1− a provides the probability of rejecting
the theory given the alternative hypothesis of uniform random choices. Thus, we relate the
area and the power of our test under the alternative hypothesis of uniform random behaviour.
This particular hypothesis coincides with one of the most common specifications of type 0

11Thus, when we are shown evidence that variations of the CH model appear systematically among the most
parsimonious models for a given dataset when looking at the number of parameters (e.g. Figure 6 in Wright
and Leyton-Brown [In Press]), we would like to know that this effect is not driven by the mere fact that the
underlying set of predicted outcomes is larger for CH as in the p-beauty contest example. The method of
counting the number of parameters cannot address this concern.

12In our application, the total number of possible individual datasets is 4.56E+14.
13We compared these results to a sample of 10,000 and check that the difference is within 0.001, reinforcing

the idea that, after increasing the size of the sample 10 times, the estimated area does not change.
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but other alternative hypothesis are reasonable (e.g. most general theories as an alternative
hypothesis). The power of the test with these alternative hypotheses, however, would not map
into the inverse of the Selten’s area as described above.

3 Application
We apply this method to the experimental data from Fragiadakis et al. [2017], which satisfy
the three aforementioned conditions: multiple choices, no feedback and controlling for other
sources of unobserved heterogeneity.

3.1 Experimental Games
Fragiadakis et al. [2017] modify the 11-20 game (Arad and Rubinstein [2012]) as follows. In a
generic experimental game, g, a player i and her opponent simultaneously select integers, si and
s−i, respectively from a common strategy set Sg = {1, 2, . . . , UBg}, where UBg is the game’s
upper bound. Player i earns si points automatically for selecting si. If si is exactly Dg less
than s−i, where Dg is g’s commonly known undercutting distance, then i earns Bg > UBg×Dg

additional points. If si = s−i, then player i earns bg ∈ (UBg − 1, Bg −Dg) additional points.
In the actual experiment, forty subjects face 11 of these games (see Table 1).

Table 1.—Parameters of the Experimental Games

Game g 1 2 3 4 5 6 7 8 9 10 11
UBg 14 17 20 23 26 29 32 18 19 22 23
Dg 3 4

The points that subjects earn in each of these games are converted into money at the end
of the experiment. For that, separate and independent binary lotteries are used (Roth and
Malouf [1979]). If a subject earns l points in a game, the corresponding lottery pays $5 with
probability l/150 and $1 with probability 1 − l/150. This mechanism has been commonly
used in experiments to induce risk neutrality as subjects are forced to maximize the number
of tickets of the lottery.14 Consequently, an induced risk neutral agent will maximize the
expectation of the following payoff function:

πg
i (si, s−i) = si +Bg × αB + bg × αb (2)

Thus, in this experiment, the expected payoff for an individual will depend on the proba-
bility αB that she undercuts the other player exactly by Dg, si = s−i−Dg and the probability
αb that she chooses the same number as the other other player, si = s−i. Both cases cannot
be true at the same time but it can be the case that none of them is. Further details of the
experimental procedures can be read in the original experiment by Fragiadakis et al. [2017].

14Although the mechanism has a strong theoretical basis and is moderately popular, it has not been universally
celebrated (see Selten et al. [1999]).
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3.2 Further Theoretical Details and Method Implementation
We next provide some details as to how the theories of Strategic Thinking (LK, CH and GLK)
are applied to these games. These models are distinguished by the particular function mi

affecting the distribution of lower types. This function will impose restrictions on the possible
αB and αb that a subject can expect given her type.

We need to define, first, the strategy profile of type 0. According to Assumption 2, this
strategy is exogenously given. Many applications of non-equilibrium strategic thinking opt
for either an uniform random type 0 or a better suited description given the application (see
Crawford et al. [2013] for a review). Previous work in 11-20 games (Arad and Rubinstein
[2012] and Alaoui and Penta [2016]) have chosen UBg. In these games, UBg is the number
providing the highest payoff for a naive player who does not form beliefs about other players.
The alternative of a type 0 choosing uniformly random in this game implies not only that indi-
viduals are unable to forming beliefs about others but also that they ignore the consequences
of choosing one action rather than another. This alternative seems too strong given the results
of Arad and Rubinstein [2012] showing that a substantial fraction of the population are type
0, who choose UBg. In these games, the concern of using the correct type 0 specification has
been muted since the best-response of a type 1 in these games is UBg −Dg, independently of
whether type 0 is UBg or uniformly random choices.15 For our analysis, this is, nevertheless,
important because the utility derived from responding to one type 0 or another is different.
With a uniformly random type 0, choices outside the set of best-responses receive a higher
utility. In contrast, by using a UBg, we are punishing deviations more harshly and, hence, we
have a more restrictive test.

Once we define the type 0, one of the advantages of Fragiadakis et al. [2017] is that the set
of BR(mi(ki)) for any strategic theory is straightforward.

Observation 1. In game g, a GLK player i of type ki > 0 who believes the chance of a type
h action is fk(h). Given assumption 3,

∑k−1
h=0 fk(h) = 1, her best response (given an arbitrary

ki and ∆(K−i)), is an element of the following form UBg − β ×Dg where β ∈ {1, 2, ..., k}.

Proof. Suppose a GLK player i of type k selects some action, si, outside the corresponding
sequence in game g. Her payoff will be si since, given her beliefs over types, neither the bg
bonus is realized, nor the Bg bonus. The aforementioned sequence always contains an element
with a profitable deviation paying si +Bg × fk(h) + bg × fk(h

′) > si, where fk(h) or fk(h
′) are

always strictly greater than 0, given her beliefs.

The cardinality of the set of best responses is given by the ceiling of the total number of
strategies divided by the undercutting distance, ⌈UBg

Dg
⌉.16 The actual action for a given type k

will depend on the particular distribution of types. Take the experimental game g = 1, where
UB1 = 14 and D1 = 3. Type 0 is assumed to choose si = UB1 = 14. Given this type 0,
the sequence for type k = 1 only have an element: si = UB1 − D1 = 11. Type 2 chooses
an element in the set si = {11, UB1 − 2 × D1 = 8}, depending on whether she believes that
the fraction of type 0 players is above or below 62

165 . Type 3 will choose an element in the set
15The restriction that Bg > UBg ×Dg ensures that this is the case.
16The ceiling function is defined as ⌈x⌉ = min{m ∈ Z | m ≥ x}.
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si = {11, 8, UB1 − 3 × D1 = 5}, depending on the particular distribution over lower types.
Finally, type 4 will choose ni = {11, 8, 5, UB1 − 4 × D1 = 2}, depending on the particular
distribution over lower types.

Notice that, in this example, type 5 or any higher type is forced to distribute the mass over
lower types in the same domain as type 4 because there is no additional room to undercut. If a
type 5 were to distribute the mass over a larger domain in another game when that is possible,
that type would fail our stringent test (in particular, Assumption 3). This is true not only
for the example but more generally for the Experimental Games. In general, the highest type
allowed in a given Experimental Game is designed to corresponds with the cardinality of the
set of best responses. This feature of the design addresses the question above about how many
types to choose for our analysis. The Experimental Games were designed so that the lowest
of the highest types is 4, and, consequently, the most common types in previous experiments
(type 0 – 3) can be potentially observed in every game.

The payoff function is given by Equation 2 but subjects evaluate this expression depending
on their type and distribution over lower levels as in Equation 1. Thus, theories of strategic
thinking restrict αB and αb to be equated to the frequency of types that can be undercut
s̃−i = si +Dg and choose the same strategy s̃−i = si, respectively. When a player chooses a
strategy outside the set of best responses, si /∈ BR(mi(ki)), the corresponding payoff does not
include any bonus, πg

i (si,m
i(ki)) = si (see proof above). For best responses, si ∈ BR(mi(ki)),

the associated utility depends on the particular theory of strategic thinking.
Suppose that an individual chose si = 11 in g = 1. If we evaluate the associated utility

according to LK of type 2, πg
i (11, LK

i(2)) = si +Bg × αB + bg × αb = 11 + 100× 0 + 35× 1.
A LK player of type 2 believes (according to the definition) that f2(1) = 1 and, consequently,
everyone chooses 11. Thus, she can only earn the bg in addition to si. Now, if we evaluate
the associated utility according to CH of type 2, πg

i (11, CH i(2)) = 11+ 100× 1
1+τ +35× τ

1+τ .
Finally, if we evaluate the associated utility according to GLK of type 2, πg

i (11, GLKi(2)) =
11 + 100× z + 35× (1− z) where z is the probability of finding a type 0 and the complement
probability, 1 − z is the probability of finding a type 1. These examples make clear how the
utilities in the inequalities are calculated.

The implementation of the test for the different theories is as follows. For GLK, we oper-
ationalize our test with an arbitrarily fine grid search on fk(h) ∈ [0, 1] for each k and h ∈ Ki

and check if the system of inequalities is satisfied at any node in the grid.17 For LK, setting
up the system of inequalities is straightforward because k is enough to derive the expected
utility for the corresponding system. For CH, we also proceed with a grid search on τ over a
sensible range. We select a range between [0, 25]. Camerer et al. [2004] present estimates of τ
in the range [0, 15.9]. We performed some sensitivity analysis over the selection of the upper
bound of the range and results do not change. A reason for this is that, in the Experimental
Games, a CH player of type k is identical to a LK player of type 1 player when τ = 0 and,
when τ ≫ k, then, a CH player of type k tends to a LK player of type k because the mass of
beliefs placed in type k − 1 increases with τ . Consequently, LK utilities are at the bounds of

17Grid search method is standard in the revealed preference literature (e.g., Crawford [2010]). We are not
concerned about identification of the parameters but verification of rationalizability. So, it is enough to find a
node for which the system of inequalities is satisfied. In case of not finding one, we should rely on the assumption
of monotonicity of the measure p – in between nodes – or choose an arbitrarily finer grid.
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CH results, governed by τ .

3.3 Notes on Equilibrium
CH and LK predictions tends towards equilibrium in dominance solvable games, such as the Ex-
perimental Games, when τ → ∞ and k → ∞. But the set of equilibria can be larger. For exam-
ple, the Experimental Games include Dg equilibria in pure strategies: {(1, 1), (2, 2), ..., (Dg, Dg)}.
This result is straightforward. When subjects cannot undercut, their highest payoff is matching
the other players’ choice. As this is true for every pair of strategies (si, si) where 1 ≤ si ≤ Dg,
there is a problem of equilibrium selection. Thus, equilibrium players will choose the strategy
associated to the equilibrium that they believe the other player chooses.

The strategies in the equilibrium consistent with these theories need to be in the set of best
responses of these theories (defined above): (UBg − ⌈UBg

Dg
⌉ ×Dg, UBg − ⌈UBg

Dg
⌉ ×Dg) (Level-k

equilibrium). In addition to this Level-k equilibrium, we can distinguish two additional criteria
for selecting pure equilibria. One is the payoff-dominant equilibrium (Harsanyi and Selten
[1988]), (Dg, Dg), which is Pareto dominant to any other equilibrium, and the other one is the
lower bound equilibrium, (1, 1), which is Pareto dominanted by any other equilibrium.18

In short, we create a behavioural model EQ and assume that an EQ player will select
strategies according to one of the three selection criteria above and will believe that the other
player uses the same criterion. We will use the results of EQ as a baseline to compare the
results of the theories of strategic thinking.

4 Results
Figure 1 depicts the histogram of actions in each game. Bars in red are choices consistent with
equilibrium play, bars in green are consistent with actions consistent with strategic thinking
theories (LK, CH and GLK) and the remaining bars appear in black.

There is apparent support for strategic thinking theories in each game. Not surprisingly,
when we look at the average Selten measure across games, we find that the predictive success
of strategic thinking theories and equilibrium is 0.58 and -0.052, respectively.19 However, if
strategic thinking theories are intended to explain individual behaviour in games, we should
not ignore individual consistency when testing these theories. The method described in Section
2 addresses this.

Table 2 disaggregates the two components of this predictive measure, the hit rate (left
panel) and the area (right panel). The corresponding results are further disaggregated by the
efficiency levels, ea, 0.9, 0.95 and 1. An efficiency level of 1 indicates that subjects pass the
stringent test. The efficiency levels of 0.9 and 0.95 are the conventionally used thresholds and
indicate a tolerance to efficiency losses of, at most, 10% and 5%, respectively.

18In a subset of the Experimental Games, there are other equilibria. However, there is no clear selection
criterion that will lead to choose these equilibria in that subset of Experimental Games and choose the afore-
mentioned equilibria in the complementary subset.

19Notice that, in our application, all strategic thinking theories are observationally equivalent if we look each
game separately - as they predict the same actions in each game. Results by game and further details appear
in Appendix A.
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Figure 1.—Histograms by Game

Table 2.—Hit Rates and Area by Model and Efficiency Level

Hit rate Area (1- Power)
0.9 0.95 1 0.9 0.95 1

GLK 30% 27.50% 10% 0.18% 0.18% 0.003%
CH 12.50% 12.50% 2.50% 0 0 0
LK 2.50% 2.50% 2.50% 0 0 0
EQ 0 0 0 0 0 0

There are several features to notice in the table. As expected, demanding a higher efficiency
reduces the hit rate of the theory as well as the area. The percentages in the cells decrease as
we move from an efficiency level of 0.9 to one of 1. As expected, for any given efficiency level,
the percentages in CH and LK are smaller than in GLK for the hit rates but higher for the
areas. This result shows that, as expected, these theories are less accurate theories but more
precise than GLK.

With the stringent test, GLK, CH, LK and EQ present a hit rate of 10%, 2.5%, 2.5%
and 0, respectively. To some readers, this percentages may appear low but remember that
ea produces a conservative measure. What is more, ea = 1 is the most stringent of these
conservative measures. If we relax the assumption that subjects cannot make mistakes; and
we look at the other (lower) thresholds, LK and EQ do not improve their hit rate but CH
and GLK improve to 17.5% and 35%, respectively. So, allowing a small 10% of efficiency loss
improves the hit rate of GLK (the most general form of strategic thinking theories) by factor
3.

Result 1. In the data, the hit rate of the theories of strategic thinking is strictly positive
for every efficiency level. Allowing a 10% efficiency loss, a substantial fraction (30%) of the
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individual choices can be explained with these theories. This fraction decreases as we restrict
the theory further (e.g., CH and LK).

Given Result 1, we would like to know if the variation across theories of the hit rate is
significant. To address this question, we build the 95% confidence intervals for each estimate
in Table 2. The hit rates indicate the number of subjects out of the total number of subjects
who pass the test according to the theory. This frequency follows a binomial distribution where
the estimates are the proportion of successful events. We use this distribution to calculate the
confidence intervals.20 Formally, the performance of two theories is not statistically different if
the estimate of a theory is within the confidence interval of the other. The results are presented
in Figure 2.

Figure 2.—Hit Rates with 95% Confidence Intervals by Model and Efficiency Index

When we look at the stringent tests, ea = 1, there is no significant difference between
theories. However, as we relax the stringent test, the differences start to appear quite rapidly.
When ea = 0.95, LK and EQ are not different from each other but they are different from CH
and GLK, which, in turn, are not significantly different from each other. When ea = 0.9, GLK
presents a hit rate significantly higher than CH, which, still presents a hit rate significantly
higher than LK and EQ.21

Result 2. There are significant differences in the hit rates across theories. These differences
appear related to the restrictions of the theory.

20As EQ presents a proportion at the bound 0, we can only construct the one tail 97.5% confidence interval.
21When we use the more powerful z-test of Suissa and Shuster (1984), we find that the only no significance

difference is when there is strictly less than 3 persons difference between theories.
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Now, if we look at the area in the right panel of Table 2, we realize that the results of these
tests are extremely powerful. Theoretically, the area is strictly greater than 0. However, most
cells indicate an estimated area of 0 (i.e., 0 subjects out of 100,000 pass the test), indicating
that the actual area must be a really small number even if strictly greater than 0. In turn,
this indicates that the statistical power of the test with respect to the alternative hypothesis of
random behaviour is 1. The only exception is GLK with an area of 0.18%, 0.18% and 0.003%
at the efficiency levels 0.9, 0.95 and 1, respectively. Consequently, the statistical power of the
tests for GLK at 0.9, 0.95 and 1 are 99.82 and 99.82 and 99.997, respectively.

Result 3. In the data, theories of strategic thinking are extremely precise, generally, with areas
of 0, leading to extremely powerful tests with respect to the alternative hypothesis of random
behaviour.

Except for the stringent test, the other thresholds are arbitrary. Thus, we investigate the
robusteness of these results for other values of ea ∈ [0, 1]. Figure 3 presents, for a given ea, the
frequency of (actual or artificial) subjects with a higher or equal ea, according to each model.
For each model, the hit rates are presented with solid lines and the areas with dashed lines.
For ea = {0.9, 0.95, 1}, the values in Figure 3 and in Table 2 coincide.

Figure 3.—Distributions of Efficiency Indices (Afriat) by Model

The tradeoff between the hit rate and the area is straightforward in Figure 3. When a lower
efficiency index ea is demanded, all the theories explain a higher frequency of subjects. At the
same time, the area of the theory also increases significantly and, consequently, the power of
test decreases to 0 for these low values of ea. Furthermore, GLK stochastically dominate both
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LK and CH for every value of ea. This result ratifies that GLK have these two models nested
within. Also, EQ crosses with the lines of the other models at some point. This effect is a
direct consequence of EQ not being nested into any of these theories.

The Selten index, p = r − a ∈ [−1, 1], aggregates the hit rate and the area based on the
aforementioned axioms. The results for each theory and for the threshold levels is presented
in Table 3.

Table 3.—Predictive Success by Model and Efficiency Index

Selten index 0.9 0.95 1
GLK 0.2982 0.2732 0.097
CH 0.125 0.125 0.025
LK 0.025 0.025 0.025
EQ 0 0 0

Result 3 establishes that our test is extremely powerful (area close to 0) and, therefore, the
Selten axiomatic index is going to be dominated by the hit rate. Thus, the numbers in Table
3 are very similar to those in the left panel of Table 2.

Result 4. The predictive success of the theories of strategic thinking is not mechanically due
to the lower precision of these theories (as established in Result 3). The predictive success is
the product of the accuracy of these theories (as established in Results 1 and 2).

4.1 Robustness checks
One concern with the analysis presented so far is that, as Afriat’s efficiency index is very
conservative (i.e., subjects are measured by their worst deviation in the system of inequalities,
ea = min{et}), our results only provide a lower bound to the actual predictive success of
models of strategic thinking.

An alternative efficiency index is proposed by Varian and measures the square of the Eu-
clidian distance from rationalization. However, this index can take values higher than 1 and,
therefore, the mapping into the hit rate and the area is not possible.22 Still, we calculate the
index according to each model for every actual subjects as well as for the artificial subjects.
Figure 4 presents, for a given ev, the frequency of (actual or artificial) subjects with a higher
or equal ev, according to each model. The actual subjects are represented with a solid line
while the artificial subjects are represented with a dashed line. Now, ev = 0 means a distance
of zero with respect to the model. A higher ev indicates a higher distance between the data
and the model.

22We could have constructed several normalizations. One normalization divides ev by T , which is the maximum
distance. As we increase the number of observations, predictive theories will present smaller and smaller indices,
which makes the comparison harder. Another normalization divides any ev by the lowest value needed to
rationalize every subject. This will only work as long as the lowest value is not 0. Furthermore, we would be
comparing theories with different lowest values. As a decision about the normalization is not clear, we report
the absolute values.
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Figure 4.—Distributions of Efficiency Indices (Varian) by Model

The results show a similar pattern to that described in Result 4. For each theory of strategic
thinking, the solid line (weakly) stochastically dominates the dashed line for every value of ev.
This suggest that the predictive power of these models is not mechanically due to the fact
of being more permissive theories. We can also see that the ranking of the different theories
remains the same. Yet, the difference between GLK and both CH and LK is shorter; and all
theories of strategic thinking substantially outperform EQ.

When ev = 0, the frequency of subjects should be the same when ea = 1. However, as
soon as we allow some loss of efficiency, the results may vary. For example, when we allow an
average efficiency loss of 10%, which corresponds with a squared distance of ev = 0.11, 37.5%
of the subjects are classified according to GLK (in comparison with 30% when ea = 0.9 and
the highest efficiency lost was 10%). However, when we allow an average efficiency loss of 30%,
which corresponds with a squared distance of ev = 0.99, 75% of the subjects are classified
according to GLK (in comparison with 30% when ea = 0.7 and the highest efficiency lost was
30%).

Result 5. The Result 4 of the conservative test are robust with more permissive tests. In
fact, when some efficiency loss is allowed, the frequency of subjects consistent with the theories
increase more rapidly in the permissive test than in the conservative test and these frequencies
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stochastically dominate those of random play.

5 Discussion
In this paper, we propose a method to test the necessary and sufficient conditions of models
of strategic thinking, non-parametrically. Furthermore, we also control for how easy is for any
given theory to pass our test. Thus, we can address questions about the predictive success
of current models of strategic thinking as well as the upper bound for the theory of strategic
thinking as a whole. Our results show positive evidence for current models and the theory of
strategic thinking as a whole. These results are not mechanically due to these theories being
permissive.

The inference from these results should be qualified in two dimensions. First, the inferences
should be limited to the dominance solvable games in which we applied our method. However,
our method could be used to study other games as long as the datasets satisfy three condi-
tions: more than one choice is observed, no feedback and the underlying utility is monotonic
in probabilities. Second, we study deterministic versions of strategic thinking, which includes
Assumptions 1 - 3. These deterministic versions are the most popular versions and our As-
sumptions are met in those models. Relaxations of these Assumptions would obviously lead to
a better description of the data. For example, one could relax Assumption 1 and allow noisy
optimization and find a better description of behaviour (see Goeree and Holt [2004] and Goeree
et al. [2017]). But, at the same time, passing the test would be easier for this more permissive
version. Alternatively, we could use a different type 0 as Assumption 2 is silent about what
type 0 is. As discussed in Section 3.2, the alternative uniform random type 0 would lead to
a less severe punishment for deviations, which, in turn, would translate into a higher chance
of passing the tests compared with those presented in the paper. Other particular hypothesis
about type 0 play could lead to circular explanations (Hargreaves Heap et al. [2014]) so there
are limits to relaxing Assumption 2. Assumption 3 is central to the theory of strategic thinking
and it is not clear what a relaxation of this Assumption should look like. Instead, one could
propose alternative distributions of lower levels and check with our method the predictive
success of those alternative distributions. If an alternative model produces higher predictive
success, controlling for permissiveness, we will be closer to bridge the gap between theory and
evidence (Camerer [2003]). Our results show that, for our games, there is some room for this
when errors are allowed.

Our method and results should be put in a wider context. The applicability of our method
comes at a cost. Kneeland [2015] uses more complex Ring games (and datasets) in order to
estimate an individual’s type (order of rationality). In our two player normal form games,
different types with different distributions of lower types can lead to the same choices. So,
our method does not generally point identify the actual type but it allows statements about
whether subjects are consistent with a specific model to be made in more commonly used and
simple games.

More importantly, there has been a recent interest in the reliability of experimental eco-
nomics, and replicability as a source for credibility in those experimental tests (Maniadis et al.
[2014]; Camerer et al. [2016]). Two main reasons why replications are scarce in the profession
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are the lack of appropriate incentives (i.e., small chance of impact in a top journal, which is
especially important for junior scholars) and the substantial amount of resources required. Be-
fore incurring such a investment, one could look at the power of the test to be informed about
its reliability. In behavioural game theory experiments, however, the null hypothesis usually
involves equilibrium and the behavioural theory acts as the alternative hypothesis. Thus, it is
difficult to calculate power because of the lack of precision of the behavioural theory. Using
the Selten index, we can always circumvent this problem. We can estimate how easy passing
a test is for a given model and, therefore, how confident we should be about an inference.
Furthermore, the computational methods that we employ for this estimation are calculated
within a reasonable amount of time. Thus, this is an affordable method to figure out the
reliability of a test. One recommendation for journals is to only consider papers reporting a
small permissiveness.

References
S. N. Afriat. The construction of utility functions from expenditure data. International Eco-

nomic Review, 8(1):67–77, 1967. 11

S. N. Afriat. Efficiency estimation of production functions. International Economic Review,
13(3):568–598, 1972. 3, 11, 12

S. N. Afriat. On a system of inequalities in demand analysis: An extension of the classical
method. International Economic Review, 14(2):460–472, 1973. 4, 11, 12

L. Alaoui and A. Penta. Endogenous depth of reasoning. The Review of Economic Studies, 83
(4):1297–1333, 2016. 4, 15

J. Andreoni and J. Miller. Giving according to garp: An experimental test of the consistency
of preferences for altruism. Econometrica, 70(2):737–753, 2002. 6

J. Andreoni, M. Castillo, and R. Petrie. What do bargainers’ preferences look like? experiments
with a convex ultimatum game. American Economic Review, 93(3):672–685, 2003. 6

A. Arad and A. Rubinstein. The 11–20 money request game: A level-k reasoning study. The
American Economic Review, 102(7):3561–3573, 2012. 4, 10, 14, 15

T. K. M. Beatty and I. A. Crawford. How demanding is the revealed preference approach to
demand? American Economic Review, 101(6):2782–95, 2011. 3, 6

S. G. Bronars. The power of nonparametric tests of preference maximization. Econometrica,
55(3):693–698, 1987. 3, 13

C. F. Camerer. Behavioral Game Theory: Experiments in Strategic Interaction. Princeton
University Press, 2003. 2, 23

C. F. Camerer, T-H. Ho, and J-K. Chong. A cognitive hierarchy model of games. The Quarterly
Journal of Economics, 119(3):861–898, 2004. 2, 9, 16

24



C. F. Camerer, A. Dreber, E. Forsell, T-H. Ho, J. Huber, M. Johannesson, M. Kirchler, J. Al-
menberg, A. Altmejd, T. Chan, E. Heikensten, F. Holzmeister, T. Imai, S. Isaksson, G. Nave,
T. Pfeiffer, M. Razen, and H. Wu. Evaluating replicability of laboratory experiments in eco-
nomics. Science, 2016. 23

M. Costa-Gomes, V. P. Crawford, and B. Broseta. Cognition and behavior in normal-form
games: An experimental study. Econometrica, 69(5):1193–1235, 2001. 9

M. A. Costa-Gomes and V. P. Crawford. Cognition and behavior in two-person guessing games:
An experimental study. American Economic Review, 96(5):1737–1768, 2006. 2, 3, 9

M. A. Costa-Gomes and G. Weizsäcker. Stated beliefs and play in normal-form games. The
Review of Economic Studies, 75(3):729–762, 2008. 8

I. Crawford. Habits revealed. The Review of Economic Studies, 77(4):1382–1402, 2010. 16

V. P. Crawford, M. A. Costa-Gomes, and N. Iriberri. Structural models of nonequilibrium
strategic thinking: Theory, evidence, and applications. Journal of Economic Literature, 51
(1):5–62, 2013. 2, 11, 15

F. Echenique, S. Lee, and M. Shum. The money pump as a measure of revealed preference
violations. Journal of Political Economy, 119(6):1201–1223, 2011. 12

D. Fragiadakis, D. Knoepfle, and M. Niederle. Who is strategic? Working paper, 2016. 3

D. Fragiadakis, A. Kovaliukaite, and D. Rojo Arjona. Testing cognitive hierarchy assumptions.
Working paper, 2017. 4, 14, 15

S. Gächter and A. Riedl. Dividing Justly in Bargaining Problems with Claims. Social Choice
and Welfare, 27(3):571–594, 2006. 6

S. Georganas, P. J. Healy, and R. A. Weber. On the persistence of strategic sophistication.
Journal of Economic Theory, 159:369–400, 2015. 10

J. K. Goeree and C. A. Holt. A model of noisy introspection. Games and Economic Behavior,
46(2):365 – 382, 2004. 23

J. K. Goeree, P. Louis, and J. Zhang. Noisy introspection in the 11–20 game. The Economic
Journal, page In press, 2017. doi: 10.1111/ecoj.12479. 23

Y. Halevy, D. Persitz, and L. Zrill. Parametric recoverability of preferences. Journal Political
Economy, In press. 12

S. Hargreaves Heap, D. Rojo Arjona, and R. Sugden. How portable is level-0 behavior? a test
of level-k theory in games with non-neutral frames. Econometrica, 82(3):1133–1151, 2014.
2, 9, 23

D. Harless and C. F. Camerer. The predictive utility of generalized expected utility theories.
Econometrica, 62(6):1251–89, 1994. 6

25



J. C. Harsanyi and R. Selten. A General Theory of Equilibrium Selection in Games. MIT
Press, 1988. 17

J. D. Hey. An application of selten’s measure of predictive success. Mathematical Social
Sciences, 35(1):1 – 15, 1998. 6

C. Keser and M. Willinger. Theories of behavior in principal–agent relationships with hidden
action. European Economic Review, 51(6):1514 – 1533, 2007. 6

T. Kneeland. Identifying higher-order rationality. Econometrica, 83(5):2065–2079, 2015. 11,
23

Z. Maniadis, F. Tufano, and J. A. List. One swallow doesn’t make a summer: New evidence
on anchoring effects. American Economic Review, 104(1):277–90, 2014. 23

R. Nagel. Unraveling in guessing games: An experimental study. The American Economic
Review, 85(5):1313–1326, 1995. 2, 9

M. Polisson, J. K.-H. Quah, and L. Renou. Revealed preferences over risk and uncertainty.
Discussion Paper Series, Department of Economics 201706, Department of Economics, Uni-
versity of St. Andrews, 2017. 4, 6

P. Rey-Biel. Equilibrium play and best response to (stated) beliefs in normal form games.
Games and Economic Behavior, 65(2):572–585, 2009. 8

A. E. Roth and M. W. Malouf. Game-theoretic models and the role of information in bargain-
ing. Psychological review, 86(6):574, 1979. 4, 14

T. C. Salmon. An evaluation of econometric models of adaptive learning. Econometrica, 69
(6):1597–1628, 2001. 4

P. A. Samuelson. A note on the pure theory of consumer’s behaviour. Economica, 5(17):61–71,
1938. 11

R. Selten. Properties of a measure of predictive success. Mathematical Social Sciences, 21(2):
153–167, 1991. 1, 2, 3, 5, 6

R. Selten and W. Krischker. Comparison of Two Theories for Characteristic Function Exper-
iments. Springer, Berlin, 1983. 6

R. Selten, A. Sadrieh, and K. Abbink. Money does not induce risk neutral behavior, but binary
lotteries do even worse. Theory and Decision, 46(3):213–252, 1999. 14

D. O. Stahl and P. W. Wilson. On players� models of other players: Theory and experimental
evidence. Games and Economic Behavior, 10(1):218–254, 1995. 2, 9

J. B. Van Huyck, J. P. Cook, and R. C. Battalio. Adaptive behavior and coordination failure.
Journal of Economic Behavior and Organization, 32(4):483 – 503, 1997. 6

26



H. R. Varian. Goodness-of-fit in optimizing models. Journal of Econometrics, 46(1):125 – 140,
1990. 4, 11, 12

J. T-Y. Wang, M. Spezio, and C. F. Camerer. Pinocchio’s pupil: Using eyetracking and
pupil dilation to understand truth telling and deception in sender-receiver games. American
Economic Review, 100(3):984–1007, 2010. 6

M. Willinger and A. Ziegelmeyer. Strength of the social dilemma in a public goods experiment:
An exploration of the error hypothesis. Experimental Economics, 4(2):131–144, 2001. 6

J. R. Wright and K. Leyton-Brown. Predicting human behavior in unrepeated, simultaneous-
move games. Games and Economic Behavior, In Press. 3, 12, 13

6 Appendix A

Table 4.—Selten Index by Game

Game
Selten Index

Equilibrium LK-actions
1 0 0.625
2 -0.075 0.625
3 -0.05 0.575
4 -0.05 0.575
5 -0.05 0.65
6 -0.075 0.575
7 -0.05 0.55
8 -0.05 0.525
9 -0.05 0.55
10 -0.075 0.6
11 -0.05 0.525

Mean -0.052 0.58

Table 5.—Hit Rates and Area by Model and Efficiency Level for the last 6 games

Hit rate Area (1- Power)
0.9 0.95 1 0.9 0.95 1

GLK 55% 55% 25% 6.65% 6.6% 3.46%
CH 15% 15% 7.50% 0 0 0
LK 5% 5% 5% 0 0 0
EQ 0 0 0 0 0 0
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Figure 5.—Distributions of Efficiency Indices (Afriat) by Model for the last 6 games
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Figure 6.—Distributions of Efficiency Indices (Varian) by Model for the last 6 games
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