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Abstract 

Bringing together emerging lessons from biophysical and social sciences as well as newly 
available data, we take stock of what can be learned about the relationship among subjective 
(reported) and objective (measured) soil fertility and farmer input use in east Africa. We identify 
the correlates of Kenyan and Tanzanian maize farmers’ reported perceptions of soil fertility and 
assess the extent to which these subjective assessments reflect measured soil chemistry. Our 
results offer evidence that farmers base their perceptions of soil quality and soil type on crop 
yields. We also find that, in Kenya, farmers’ reported soil type is a reasonable predictor of 
several objective soil fertility indicators while farmer-reported soil quality is not. In addition, in 
exploring the extent to which publicly available soil data are adequate to capture local soil 
chemistry realities, we find that the time-consuming exercise of collecting detailed objective 
measures of soil content is justified when biophysical analysis is warranted, because farmers' 
perceptions are not sufficiently strong proxies of these measures to be a reliable substitute and 
because currently available high-resolution geo-spatial data do not sufficiently capture local 
variation. However, in the estimation of agricultural production or profit functions, where the 
focus is on averages and in areas with low variability in soil properties, the addition of soil 
information does not considerably change the estimation results. Our findings are of interest to 
researchers who design, field, or use data from agricultural surveys, as well as policy makers 
who design and implement agricultural interventions and policies. 

Keywords: natural resource management, soil fertility, agricultural productivity, farmers’ 
perceptions, Kenya, Tanzania. JEL codes: O13, Q12, Q24, Q56 

 

*For valuable input and comments on earlier drafts, we thank Christopher Barrett, Leah Bevis, Anil Bhargava, 
David R. Lee, Bart Minten, Cheryl Palm, Emilia Tjernström, and participants at the Second Global Food Security 
Conference in Ithaca, NY, the Structural Transformation of African Agriculture and Rural Spaces (STAARS) 
Conference in Addis Ababa, Ethiopia, the 2016 Midwest International Economic Development Conference in 
Minneapolis, MN, the Association of Environmental and Resource Economists (AERE) Annual Summer 
Conference in Breckenridge CO, the Agricultural & Applied Economics Association (AAEA) Annual Meeting in 
Boston MA, and seminars at Cornell University and Williams College. The data collection in Kenya was supported 
by the Atkinson Center for a Sustainable Future at Cornell University and the World Agroforestry Center (ICRAF); 
funding was provided by Fondation des Fondateurs, Cornell University, and an AAEA Tweeten Scholarship. The 
authors thank Siobhan Murray, Amparo Palacios-Lopez, and others on the LSMS-ISA team at the World Bank for 
their insights on the Tanzania data.  



	
   2 

Introduction  

While many socio-economic factors contribute to poor crop yields across Sub-Saharan Africa 

(SSA), a major biophysical contributor is the depletion of soil fertility (Sanchez 2002; Sanchez 

and Swaminathan 2005; Vanlauwe et al. 2015; Tully et al. 2015). Across different agro-

ecological zones in SSA, soils poor in nutrients and soil organic matter not only partially account 

for low yields but also limit the effectiveness of other inputs such as fertilizer and labor, and 

reduce farm households’ resilience to external stressors and shocks (e.g., pests, crop diseases, 

climate change). Moreover, the direct links between soil fertility, agricultural productivity, food 

insecurity, and rural poverty can be self-reinforcing. Whether due to poor initial soil endowments 

or resource constraints that lead to low input use (fertilizers and/or organic soil amendments), the 

broad pattern across much of SSA is soil degradation over time (Tittonell, Vanlauwe, Leffelaar, 

Rowe, et al. 2005; Güereña et al. 2016). As a result, some farmers find themselves trapped in low 

productivity equilibria (Shepherd and Soule 1998; Antle, Stoorvogel, and Valdivia 2006; 

Stephens et al. 2012; Barrett and Bevis 2015). Despite the importance of soil fertility in the 

context of agricultural development, major barriers remain in our understanding of how farmers 

form perceptions about their soil fertility, and how soil fertility – subjective (reported) and 

objective (measured) – is related to farmers’ management practices in terms of input use.  

One of the confounding factors in the relationship between soil fertility, agricultural input 

return, and farmer management decisions is the high heterogeneity in soil fertility that occurs at 

high and low spatial scales (Tittonell, Vanlauwe, Leffelaar, Shepherd, et al. 2005; Hengl et al. 

2015). More is known about the heterogeneity at larger (e.g., provincial and up) scales where the 

sources of heterogeneity include underlying geological material, agro-ecological zone, and 

biome (e.g., rainforest, savannah, desert). Modern geospatial tools coupled with historic surveys 
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have provided this information. What is less known is how this heterogeneity changes at 

increased spatial resolutions as the influence of human management decisions alters the 

underlying biophysical soil conditions. These include land-use change (e.g., clearing of forests 

for agriculture) (Recha et al. 2013), historic cropping patterns and input use (Chivenge, 

Vanlauwe, and Six 2011), cropping intensity (Güereña et al. 2016), and nutrient cycling 

(Vitousek et al. 2009). When integrated together, all of these things have unknown effects on the 

various soil parameters that constitute soil quality and fertility. Moreover, little is known about 

how this heterogeneity in soil fertility might in turn impact farmer decision-making. For 

example, Suri (2011) shows that heterogeneity in net returns can explain low technology 

adoption by some farmers; however, soil fertility remains in the error term in her model. If 

researchers can identify the role of the variation in soil fertility in farmer management practices, 

they might begin to further unpack the sources of such heterogeneity. 

A paucity of research directly examines the relationship between soil fertility and existing 

farm management practices, especially in SSA. Agronomic studies that have precise measures of 

soil fertility and yields often ignore farmers’ behavioral responses (see, for example, Vanlauwe 

et al. (2011)), while economic studies fail to account for soil fertility in estimation of agricultural 

profits and farmer welfare, at best including indicator proxy variables for soil fertility (e.g., 

Duflo et al. (2008), Sheahan, Black, and Jayne (2013)). Only a few studies with access to precise 

measures of soil fertility analyze farmers’ knowledge of land quality and within-farm variability 

in resource allocation and yields (e.g., Tittonell, Vanlauwe, Leffelaar, Rowe, et al. (2005)). 

Therefore, in this paper, we attempt to bring together emerging lessons from the biophysical and 

social sciences as well as newly available data to take stock of what we can learn about the 

relationships among subjective (farmer reported) and objective (researcher measured or 
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estimated) soil fertility and farmers’ management practices.  

Several other studies have examined these relationships, with mixed results. Cross-

sectional data from the World Bank’s Living Standards Measurement Study-Integrated Survey in 

Agriculture (LSMS-ISA) across six different countries, for example, suggest that farmers in SSA 

do not significantly vary input application rates according to perceived soil quality (Sheahan and 

Barrett 2017). At the same time, evidence from Kenya indicates that farmers apply fewer 

external inputs on soils with objectively verified low soil carbon content (Marenya and Barrett 

2009a), and adjust planting timing and weeding intensity on plots with different land quality 

(Tittonell, Vanlauwe, Leffelaar, Shepherd, et al. 2005).  

In order to better understand these empirical observations, we identify the input and 

output correlates of farmers’ perceptions of soil fertility, and assess whether farmers’ perceptions 

correlate with objective laboratory measurements of soil fertility characteristics. We also explore 

the extent to which publicly available geo-spatial soil data, estimated via sophisticated 

interpolation methods from point observations across the African continent, are adequate to 

capture local soil chemistry realities at the household, village, and data set levels. Such data sets 

are an incredible resource and their availability may obviate the need for detailed on the ground 

soil data collection, saving researchers, agricultural organizations, and governments both time 

and money. This exercise allows us to make recommendations to the broader research 

community about the relative trade-offs inherent in relying on one soil metric over another. 

Finally, we assess the role of soil information from a research standpoint by interchanging 

various soil metrics in a production function approach to the analysis of yields.  

In particular, we address the following four research questions:  
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1. What can we learn from household survey data about the determinants of farmers’ soil fertility 

perceptions? Do agricultural inputs and outputs vary with perceived soil quality and soil 

type?  

2. To what extent do farmers’ subjective perceptions of soil quality and type correlate with 

objective laboratory measurements of soil chemical fertility? In addition, can we identify 

any observable plot or household level characteristics that are correlated with farmers’ 

soil quality perceptions?  

3. Can new high-resolution and publicly available geo-spatial soil fertility data sets provide 

insight into the levels and variation of local (household, village, and data set level) soil 

fertility such as would obviate the expensive and time-consuming collection of detailed 

plot-level data?  

4. What is the role of soil (mis)information in farmers’ and researchers’ estimation of yields and 

returns to fertilizer?  

To answer these questions, we rely on three data sets that correspond with a small 

number of maize farming households in western Kenya and two data sets that correspond with a 

nationally representative sample of maize farmers in Tanzania. In both study regions, farmers’ 

perceptions of soil quality1 and their agricultural practices are drawn from household survey 

responses. Global positioning system (GPS) coordinates allow us to match these households with 

publicly available geo-referenced soil data at 250-meter spatial resolution from the Africa Soil 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  The term “soil quality” was used in the household surveys in Tanzania and Kenya and refers to 
general farmer perceptions of soil fertility.  The term “soil fertility” is used throughout this paper 
to either represent the specific soil chemical and physical fertility tests measured or as a general 
term to describe the relationship between soil attributes and crop production.	
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Information Service (AfSIS) (Hengl et al. 2015). In western Kenya, additional laboratory 

measures of plot-level soil fertility are obtained from soil analyses based on the resource- and 

time-intensive collection of soil samples (Berazneva et al. 2017). Apart from geographic 

differences, both the Kenya and Tanzania data sets also offer different contexts in terms of data 

collection efforts: the Kenya data are from a small-scale detailed survey, while the Tanzania data 

are from a nationally representative large-scale project. Combining the two geographic locations 

allows us to compare across the contexts, provide limited external validity to our findings, and 

offer recommendations to researchers on soil data collection and use.  

Our contributions are two-fold. First, we evaluate three potential sources of soil 

information: farmer-reported perceptions, plot-level measurements, and geo-referenced soil data. 

Second, we provide some initial evidence as to whether the variation in inputs and crop yields 

can be explained by soil information. Our results offer evidence of correlation between farmer 

perceptions of soil quality and soil type with crop yields but no clear correlation with inputs. We 

also find that, in Kenya, farmer-reported soil type (soil texture) is a reasonable predictor of 

several objective soil fertility indicators drawn from plot-level measurements while farmer-

reported soil quality is not. In addition, we find that the differences between the two objective 

soil data sets that we compare in Kenya—plot-level measured soil analysis data and geo-spatial 

AfSIS soil data—are considerable, indicating that the time consuming exercise of collecting 

detailed objective measures of soil content is justified when the farmer or researcher is in need of 

local biophysical data, despite the growing availability of high-resolution geo-referenced soil 

data sets. However, in the estimation of agricultural production, cost, or profit functions, where 

the focus is on averages and in areas with low variability in the soil properties, the addition of 

different types of soil information does not considerably change the estimation results. Our 
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findings are of interest to researchers who design, field, or use data from agricultural surveys, as 

well as policy makers who design and implement agricultural interventions and policies. 

Our paper proceeds as follows. In the next section, we briefly discuss the context from 

which our research questions arise. We then discuss our data sources and methods. The 

following section offers results for each of the four questions under investigation. The last 

section summarizes these findings and concludes, taking stock of what we have learned about the 

relationships among and role of various sources of soil information, and offering additional 

research directions worth pursuing, both for better comprehension of farmer behavior and for the 

collection of better data. 

Soil information and its uses 

The international development community has recently begun to turn its attention towards the 

role of soils in agricultural and human development; in fact, the Food and Agriculture 

Organization of the United Nations declared 2015 the International Year of Soils. Aware that 

soils are important, development and agricultural economists are increasingly including soil data 

in their analyses.  

When it comes to using soil data, economists generally fall into three camps. The first 

takes farmers’ subjective assessments of soil fertility as a sufficient measure of or proxy for soil 

fertility without any verification exercise or follow-up discussion about how farmers make these 

determinations (see, for example, Sherlund, Barrett, and Adesina (2002)). Most agricultural 

household surveys collect subjective information – farmers report their yields, input use, as well 

as environmental conditions. And apart from several exceptions (see, for example, Komba and 

Muchapondwa (2015) who compare farmers’ perceptions of decadal precipitation and 
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temperature mean and variance to the data from the Tanzanian Meteorological Agency), most 

studies do not verify reported data. The second camp assumes that farmers are too information-

constrained to accurately report soil fertility measures and therefore relies on highly aggregated 

or estimated measures of soil quality or soil type, derived from external mapping exercises and 

often matched using administrative boundaries (e.g., Sheahan, Black, and Jayne (2013)). The 

third camp makes the same assumptions as the second but collects and analyzes soil samples 

from the actual plots or farms under study in lieu of relying on highly aggregated or predicted 

external data sets (e.g., Marenya and Barrett (2009a)). The costs of data collection efforts that 

follow from each of these assumptions differ dramatically. Each camp makes reasonable 

assumptions under the reality of data constraints, but little research attempts to empirically 

understand the uniqueness of the information embodied in each of these types of soil data. This 

information is valuable when choosing the most accurate soil fertility metrics for analysis and in 

understanding the reasons why other metrics may be insufficient.  

While it is reasonable to expect that farmers in SSA are constrained in their ability to 

know the precise nutrient content of their soils, farmers do form assessments of their soil fertility 

and productivity (Niemeijer and Mazzucato 2003). To our knowledge, only a few studies in 

economics have sought to aid our understanding of this process absent measurement.2 Marenya, 

Barrett, and Gulick (2008), for example, study farmers’ perceptions of soil fertility and the 

impacts of fertility on yields in western Kenya. Using objective measures of soil fertility, the 

authors find evidence of widespread farmer misperception of soil fertility and show that these 

misperceptions cannot be easily explained by observed plot or farmer characteristics such as plot 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
  A review of rural development literature, as well as studies in ethnopedology that focus on how 
farmers understand their soils based on collective experiences, can be found in Marenya, Barrett, 
and Gulick (2008).	
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size or farmer’s gender or age. The Kenyan farmers in the study, similar to the farmers of the 

south-central highlands of Ethiopia (Karltun, Lemenih, and Tolera 2013), use crop yields as the 

key soil fertility indicator. Yet if yield changes lag behind the changes in soil fertility, farmers 

may be unable to identify important dynamic patterns in soil fertility and may be slow to update 

their assessments. This delayed response can result in significant deterioration in soil fertility or 

render soils unresponsive. Once soil has degraded below a productivity threshold, soil restoration 

can become prohibitively costly and therefore “economically irreversible” (Antle, Stoorvogel, 

and Valdivia 2006). For example, a series of studies looked at crop yields across a time series of 

land-use change in western Kenya. Critical soil organic matter levels, pH, and other soil fertility 

metrics declined over one to two decades (Moebius-Clune et al. 2011), yet the resulting low 

yields remained over multi-decadal time-scales despite fertilization. Judicious application of 

organic resources was necessary to reverse the soil fertility decline (Kimetu et al. 2008), but 

these application rates (18 tons per hectare) were well above economic feasibility and, if not 

maintained, yield reduced to pre-application levels within a few years (Güereña et al. 2016). 

 Moreover, resource allocation and crop management can differ according to perceived 

soil fertility. Tittonell, Vanlauwe, Leffelaar, Shepherd, et al. (2005), for example, find 

differences in the timing and intensity of crop management according to farmers’ perceptions of 

the quality of their land in Kenya. More fertile plots are planted earlier, with more spacing 

between plantings, and are weeded more often. These practices unsurprisingly lead to greater 

yields. Therefore, subjective soil fertility perceptions matter. However, beyond these few papers, 

the formation of farmers’ soil fertility assessments as well as the interactions between farmers’ 

assessments and land management practices have not been explored.  

The formation of farmers’ perceptions about their soil fertility and the farming practices 
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that flow from these perceptions are important to understanding the critical linkages between 

resource endowments, crop and land management, and agricultural productivity. These linkages, 

in turn, may have major policy and programmatic implications. From a research perspective, 

understanding the correlates of farmers’ soil assessments is a first step towards evaluating the 

research value of these subjective measures. And if objective measures of soil fertility are 

deemed preferable over subjective measures, then the next logical question is whether 

researchers should forsake free and publicly available data sets for the expensive and time-

consuming collection of their own soil chemistry data; i.e., which of the soils-data-using-

economist-camps is preferred?  

Massive amounts of resources have been funneled into the creation of publicly available 

soil data sets with high resolution and either continental or global coverage, including but not 

limited to AfSIS3 and the FAO’s Harmonized World Soil Database.4 In fact, the publicly 

available household survey data collected by national statistics agencies throughout SSA and 

overseen by the LSMS-ISA initiative include files with soil data from the FAO. Researchers 

wanting an even fuller complement of soil variables can easily match household survey data with 

the AfSIS database using provided enumeration level coordinates. But, in the end, these soil data 

sets are the result of interpolation and are only as good as the data fed into the algorithm and the 

underlying model. Moreover, interpolation itself means that the areas between sampling points 

are estimated, which, depending on the spatial resolution of the underlying data, may have large 

associated error. Without a critical assessment of how well these data represent local soil 

chemistry realities, as derived from plot-level soil analysis, researchers cannot make good 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 Available at www.isric.org/data/afsoilgrids250m 
4 Available at www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-
soil-database-v12/ en/  
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decisions about which data may be most appropriate for their work. With very few exceptions 

(e.g., Bui (2010)) comparative analyses of a publicly available spatial soil databases with plot 

level soil data are not available, and we have found no studies that assess the performance of 

AfSIS at the local level beyond the model validation exercises (e.g., Hengl et al. (2015)).  

With renewed international recognition of the important role soils play in agricultural 

production, welfare dynamics, and carbon sequestration (Lal 2012; Barrett and Bevis 2015; 

Lehmann and Kleber 2015) as well as with major resources being devoted to the collection of a 

variety of subjective and objective, measured and estimated indicators of soil fertility, it is 

imperative to assess what these data can and cannot tell us. This paper helps to sort through the 

implications by bringing together and comparing some of these data sources.  

Data and methods  

Since crop choice may be both a function of and response to a farmer’s perceived soil fertility, 

we limit our analysis to maize, the main and most important cereal in east Africa. In Kenya and 

Tanzania, for example, maize is cultivated on about four percent of total land area (FAOSTAT 

2017). Tittonell, Vanlauwe, Leffelaar, Rowe, et al. (2005) and Tittonell, Vanlauwe, Leffelaar, 

Shepherd, et al. (2005) document that farmers in Kenya plant maize across their landholdings, 

with the exception that famers tend not to plant maize in their most fertile plots near homesteads. 

In Tanzania, maize is grown by 48 percent of households. And while there is some variation in 

perceived soil quality of maize plots within households and maize plots vary by soil types in our 

data (see Tables A2 and A3 in the Appendix), we cannot rule out the possibility that farmers’ 

crop choice may mask the true relationship between perceptions, yields, and inputs. In fact, in 

Tanzania, plots deemed to have good soil quality by the farmer are more likely to be planted with 
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maize than those deemed to have average soil quality; likewise, plots with farmer-reported loamy 

soils are more likely to be planted with maize.  

Our data come from Tanzania and western Kenya and are described in the subsections 

that follow; a summary of these data sources is available in Table 1. After providing details on 

the data, we describe the analytical methods used to answer our four research questions.  

TABLE 1 HERE  

Farmer-reported soil fertility measures, yields, inputs  

We use a nationally representative sample of households from the 2010-2011 wave of the 

publicly available Tanzania National Panel Survey, data collected as part of the World Bank’s 

LSMS-ISA project (TZNPS 2016). From the full sample, we restrict our analysis to the sub-

sample of 2,360 plots containing maize in the main growing season across 1,566 households, 

with plot-level data on agricultural inputs and maize yield. A typical LSMS-ISA questionnaire 

asks respondents to specify soil quality and type for each plot under cultivation without 

prompting or guidance so that farmers’ responses should be purely based on their perceptions. 

The responses are then grouped into pre-coded categories. For the Tanzania LSMS-ISA, the pre-

coded categories for soil quality are good, average,5 or bad; for soil type or texture they are 

sandy, loam, clay, or other. The presence of sampling weights allows us to apply household-level 

population weights in the statistical analysis that follows.  

The standard modules of the LSMS-ISA questionnaire were adopted for a household 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5	
  We use good, average, and bad soil categorizations to mirror the questions in the household 
surveys. Average should be understood as intermediate (not an arithmetic mean).  
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survey effort of over 300 households collected in 2011-2012 in fifteen villages in the Nyando 

and Yala river basins of rural western Kenya (Berazneva et al. 2017). We use data for all maize-

growing households for which soil analysis is available, for a sample size of 509 maize plots 

cultivated by 307 households. Identical to the LSMS-ISA survey, respondents classify their soil 

quality and type based on their knowledge, as well as report agricultural input and maize 

production levels. The near-identical questions and classifications between the LSMS-ISA 

survey implemented in Tanzania and that implemented in Kenya allow us to easily compare 

across the two regions.6  

Agricultural input and output variables are drawn from farmer recall related to the last 

main season. Where applicable, we standardize input and output values by plot size. For Kenya, 

plot area is measured with hand-held GPS units. For Tanzania, GPS-measured plot areas are only 

available for a sub-set of all plots, so we rely on imputed plot sizes as described in Palacios-

Lopez and Djima (2014). We also draw on a variety of plot- and household-level characteristics 

from the survey data, relying mainly on those variables observed consistently across the two 

countries.  

Researcher-collected plot-level soil samples  

In western Kenya, soil samples were collected from the largest maize plot of each farm 

household at the end of the long rains season of 2011. Topsoil (0-20 cm) was randomly sampled 

from four points across the plot, mixed together (homogenized), and analyzed at the World 

Agroforestry Center’s Soil-Plant Spectral Diagnostics Laboratory in Nairobi, Kenya. The 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6	
  The soil type question was identical across the two data sources. The soil quality question 
offered several additional pre-coded options (poor, very poor, and not productive at all) in Kenya 
that were later grouped into the category of bad to correspond with the Tanzania data.  
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samples were analyzed using mid-infrared spectroscopy (MIR), a rapid nondestructive technique 

for examining the chemical composition of materials (Shepherd and Walsh 2002; Shepherd and 

Walsh 2007; Cozzolino and Moron 2003; Terhoeven-Urselmans et al. 2010). The MIR analysis 

provided information on several key soil characteristics: soil carbon measured as percentage of 

total soil carbon by mass (% by weight or % w/w),7 nitrogen content measured as percentage of 

total nitrogen in the soil by mass (% by weight or % w/w), soil pH (measured on 1 to 7 scale), 

and cation exchange capacity (CEC) measured in milliequivalent of hydrogen ions per 100 

grams of dry soil (meq/100g). While, in the case of Kenya, we refer to the MIR analyzed soil 

samples as objective, we acknowledge that, as with all soil measurement, MIR comes with its 

own measurement error. 

Soil carbon and total nitrogen content have been used as proxies for soil fertility in the 

past (see, for example, Marenya and Barrett (2009b)). These two measures are highly collinear 

and correspond to soil organic matter content that can be transient and influenced by farm 

management practices. Soil pH and CEC, on the other hand, relate more strongly to soil texture 

and mineralogy, and therefore are more stable indicators of soil fertility (Sparks 1996). We also 

classify soils as “fertile,” using thresholds and recommendations for soils in western Kenya from 

the Kenya Agricultural Research Institute (Mukhwana and Odera 2009) and from the Cornell 

Soil Health Test (Moebius-Clune et al. 2011). Fertile soil is defined as soil with organic carbon 

content greater than or equal to 2% w/w, total nitrogen content greater than or equal to 0.2% 

w/w, and pH greater than or equal to 5.2. The resulting soil data offer on-the-ground insight into 

the plot-level soil fertility of smallholder farmers in rural western Kenya. In the discussion 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7	
  The soils in the research site in Kenya are acidic and do not contain carbonates so that total 
stocks of soil carbon are equivalent to total organic carbon content.  
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below, we refer to these laboratory measurements as “measured soil data” or “soil analysis data.” 

Descriptions and interpretations of measured soil chemical fertility metrics are summarized in 

Table 2. 

TABLE 2 HERE  

Geo-referenced and estimated soil fertility measures  

We also match the household survey data with publicly available data from AfSIS. AfSIS, a 

collaborative soil ecosystem services project, provides data on soil characteristics at 250-meter 

spatial resolution (Vagen et al. 2010). The data were created by interpolating soil characteristics 

(obtained via MIR and Near Infrared Spectroscopy) from more than 28,000 sampling locations 

across Africa using techniques detailed in Hengl et al. (2015).  

The AfSIS data were downloaded from the Soil Property Maps of Africa at 250m, where 

tifs of a variety of soil characteristics are available at 0–5cm, 5–15cm, 15–30cm, and etc. depths. 

So as to ensure that the AfSIS data are comparable with the laboratory measured soil data in 

Kenya, we selected the data representing the 0-20cm depth where available (total soil nitrogen). 

Where the 0–20cm-depth level was not available (soil organic carbon, pH, and CEC), we 

selected data representing the 0–5cm and 5–15cm depths and averaged them together.  

We paired the AfSIS data with the Kenyan and Tanzanian households by extracting the 

gridded AfSIS data pertaining to the geo-references available in the household surveys. In 

Kenya, these points pertain to plots; in Tanzania, these points pertain to the average of the 

enumeration area (EA), as per World Bank LSMS-ISA restrictions.8 Although we cannot 
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  In order to pair the AfSIS data with the Kenya plot-level geo-references, we extracted the 
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guarantee an exact match up of AfSIS data with the household survey data in the case of 

Tanzania due to the EA offsets in the publicly available data, we note that there is low variation 

in the AfSIS data overall due to the way in which the AfSIS data were developed (estimation and 

interpolation based on available data points); by design, these data will have lower variation than 

the individual data points that informed them. Due to this low variation, our results are not 

greatly affected by the offsets, as data from different EAs differs very little. While the AfSIS 

data repository provides information about a large number of soil indicators, we extracted only 

the soil characteristics that best matched the available soil analysis data in order to make valid 

comparisons: soil organic carbon, total soil nitrogen, pH, and CEC.9 While organic carbon and 

total nitrogen content are susceptible to change over time, soil pH and CEC are more stable and 

therefore potentially more appropriate measures of soil fertility to obtain through satellite data. 

Summary statistics for all data are included in Table A1 in the Appendix.  

Analytical methods  

We combine the four aforementioned data sets to address our research questions. Graphically, 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
values for each soil characteristic as observed (i.e., we extracted the value for the 250-meter cell 
in which the geo-referenced point fell). So as to pair the AfSIS data with the Tanzania 
enumeration area geo-references, we extracted the values for each soil characteristic as 
interpolated (i.e., we extracted a value produced via interpolation from the values of the four 
nearest raster cells in the AfSIS data). We took these two different approaches—strict extraction 
versus interpolation—for the two countries due to the nature of the geo-references available to us 
in the household survey data for each country. However, it should be noted that there was little 
substantive difference between the observed and interpolated points in either country. For eight 
EAs in Tanzania, the included geo-reference details landed in bodies of water, meaning that we 
were unable to match these with AfSIS data. In these cases, we drew from the median values 
across EAs within a ward.  

9	
  Carbon: A/10; nitrogen: A/10; pH: A/10; CEC: no conversion necessary as the AfSIS data are 
already in the same units as the soil analysis data. A indicates AfSIS data.  
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Figure 1 displays the sample of Kenyan households with the soil analysis data (in circles) 

overlaid on the AfSIS soil pH data. From this figure we can see the relative resolution of the two 

data sets. In the left panel we observe fifteen study villages as well as the general variation in soil 

pH across western Kenya. Zooming in on one of the villages in the Lower Nyando region in the 

right panel, we see that the soil pH both decreases in variation and becomes more pixelated as we 

approach the 250-meter resolution level.  

FIGURE 1 HERE 

Our statistical analysis relies mainly on difference-in-means tests. To determine whether 

the means of perceived soil quality and soil type differ significantly across agricultural inputs, 

maize yield, and the plot-level soil analysis and geo-spatial AfSIS indicators of soil fertility, we 

use the Tukey-Kramer test, which allows for multiple pairwise comparisons while accounting for 

the family-wise error rate. To control for additional variables and to explore the heterogeneity in 

farmers’ perceptions, we also estimate an ordered probit model with a set of variables similar to 

that included in the difference-in-means analysis. The dependent ordered variable is farmers’ 

perceptions of soil quality (1=bad, 2=average, 3=good), while factors hypothesized to affect 

farmers’ classification include estimated (AfSIS) soil organic carbon and CEC, maize yield, 

agricultural inputs, and plot- and household-level characteristics.  

In addition, we undertake several descriptive analyses to assess how well the geo-spatial 

AfSIS data capture the results from the plot-level soil analysis data in Kenya. We provide scatter 

plots to visually explore how the data differ by maize plot. We also report pairwise correlation 

coefficients and equivalence tests at the village and data set-level to assess whether the AfSIS 

data can statistically capture the village-level means. 
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Finally we assess the role of soil information in the estimation of production, cost, or 

profit functions. Environmental production conditions, which may significantly vary over time 

and space, necessarily influence both yields and farmers’ production decisions (e.g., application 

of inputs). Not including conditions such as soil fertility in the estimation of production functions 

results in omitted variable bias (Sherlund, Barrett, and Adesina 2002). We therefore estimate a 

series of production functions, starting with specifications that contain no soil information then 

swapping in the three soil data information types available to us.  

The choice of functional form has received significant attention in the literature, both in 

the estimation of deterministic and stochastic production models. Some recent papers that focus 

on maize production in developing countries use a Cobb-Douglas specification (e.g., Arslan and 

Taylor 2009), a quadratic specification (e.g., Sheahan, Black, and Jayne 2013), or a translog 

specification (e.g., Abdulai and Abdulai 2017). The point of estimating a production function 

here is to demonstrate whether the coefficients, fit, and predicted yields change after including 

different soil variables. Therefore, we use several specifications. We estimate both Cobb-

Douglas and generalized quadratic specifications frequently found in the literature; whereas 

Cobb-Douglas imposes constant elasticity of substitution, the quadratic is a more flexible form 

and allows for the interaction between soil fertility and different inputs. We report the results of 

the production functions with two inputs (labor and fertilizer,10 normalized by land), with and 

without controls, as well as the means of predicted yields and of marginal physical products of 

fertilizer (in kilograms per hectare) for Kenya and Tanzania. Marginal physical product (MPP) 

measures the additional output that results from the use of one additional unit of input. In our 

case, MPP of fertilizer measures the additional maize yield in kilograms from using one 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
10 To address zero valued fertilizer input, we add one to all input levels before taking logs. 
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additional kilogram of fertilizer. By including subjective (farmers’ perceptions) and objective 

(plot level soil analysis and AfSIS) soil variables in separate specifications, we can assess 

whether the use of different types of available soil information changes estimates and the 

decisions/conclusions that would stem from those estimates. 

Results and discussion  

We present and discuss results for each of our four research questions below. A synthesis of the 

findings is then offered in the conclusion. 

Before addressing our first research question, we provide three useful descriptive findings 

that help to shed light on our main results. First, we assess to what extent perceived soil quality 

measures vary within and across farms so as to understand whether farmers are ranking their 

fields’ fertility relative to others’ plots, relative to some local mean, or relative to their own plots. 

In a decomposition of perceived  (good, average, and bad) soil quality within and between 

households and villages/enumeration areas (EAs) (Table A2 in the Appendix), we find that 

variation in farmer soil quality assessment at the plot level is largely due to differences between 

farms within a given village or EA as opposed to within farms.  

Second, we note the correlations between farmer-perceived soil quality and type in the 

cross-tabulation of frequencies shown in Table 3. Farmers distinguish between good and bad 

soils across all soil types (sandy, loam, and clay) both in Kenya and Tanzania. For example, 15 

percent of sandy soils are thought to have good soil quality as opposed to 30 percent of loam 

soils and 23 percent of clay soils in Kenya. In Tanzania, 43 percent of sandy soils have good soil 

quality as opposed to 47 percent of loam soils, and 63 percent of clay soils.  



	
   20 

TABLE 3 HERE  

Third, we note the major difference in distribution of plots across farmer-perceived good, 

average, and bad classifications in western Kenya and Tanzania (Table 4). In Tanzania, only six 

percent of maize plots are classified by their farmers as bad relative to 24 percent in Kenya. In 

Kenya, over half of all maize plots are regarded as average quality, with a mostly even split of 

remaining plots between good and bad. In both countries, a majority of farmers classify their soil 

type as loam (though the percentage is higher in Tanzania), with the remaining plots split 

between clay and sandy soils.11 

Question one: farmers’ perceptions of soil fertility vs. inputs and yields  

Table 4 displays the multiple pairwise comparisons of farmer-reported soil quality and type 

against agricultural inputs and maize yield levels. The mean values of maize yield are highest on 

good plots and lowest on bad plots in both Kenya and Tanzania. However, only in Kenya do we 

find that good plots produce statistically significantly higher yields and only relative to bad plots. 

Therefore, farmers either base their soil quality perceptions on the yield from their maize fields 

or report obtaining greater yields from plots they believe to have good soil quality; the causal 

direction of this relationship is not clear from the survey data or our analysis. Loam soils in 

Kenya have statistically significant higher yield values than do sandy soils.  

TABLE 4 HERE  

When looking at inputs used on maize plots, we find that Tanzanian farmers are far more 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
11	
  For the purposes of our work, we drop all plots classified as other from the farmer-perceived 
soil type analysis. There is only a small percentage of plots in this category in both Kenya and 
Tanzania.  
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likely to apply some amount of chemical fertilizer (e.g., DAP, urea) on their bad plots than on 

their good or average ones. This may be an indication that farmers try to improve the fertility of 

their bad plots through chemical fertilizer supplements or that farmers believe their good or 

average plots are sufficiently fertile. Average fertilizer application rates (column 4) displayed are 

conditional on use (column 1). We find no difference in binary or continuous chemical fertilizer 

use decisions based on farmer-perceived soil quality in Kenya. We find, however, that loam 

fields are more likely to receive chemical fertilizer than are sandy fields, likely because loamy 

soils have higher clay and CEC contents and therefore tend to be more responsive to fertilizer 

use (Lal 2006). We also note that far more farmers in Kenya use chemical fertilizer than do 

farmers in Tanzania and, therefore, may feel less constrained in their decision to use fertilizer on 

any of their plots.  

With respect to other agricultural inputs, we find that in Kenya good quality plots are 

more likely to receive herbicide or pesticide than bad plots, but this is not the case in Tanzania. 

Herbicides are often used to prepare land for planting (in lieu of time-consuming human-

powered tilling), which could help to explain this finding. Most strikingly, we find that farmers 

do not vary their organic resource application based on perceptions of soil quality in either 

Kenya or Tanzania. Only with respect to farmer-reported soil type in Tanzania do we find any 

statistically significant difference; loam soils are more likely to receive organic resources than 

are clay soils, perhaps because soils high in clay already have relatively high nutrient contents. 

As organic soil amendments help to rebuild degraded soils, it is of concern that farmers do not 

appear to differentiate organic resource application based on perceived soil quality, especially 

since most organic resources are generated from on-farm sources (not market-purchased).  

Question two: farmers’ perceptions vs. objective measures of soil fertility  
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Keeping in mind the limitations of the AfSIS data detailed above, Table 5 provides results of 

statistical tests comparing the AfSIS data to farmers’ perceptions of soil quality for both Kenya 

and Tanzania. We find limited correspondence between farmer-perceived soil quality and AfSIS 

soil data in Kenya. However, soil characteristics vary significantly across the farmer-reported 

soil types. Soil pH, for example, is lowest (more acidic) on plots with clay soils: 5.72 relative to 

5.82 on plots with sandy soils. The pattern is similar for the measurements of soil organic 

carbon, total nitrogen, pH, and CEC from the soil analysis data in Kenya (Table A3 in the 

Appendix).  

TABLE 5 HERE  

In addition, we find statistically significant relationships between our indicator for 

fertile12 soils and soil type in Kenya. Eighty one percent of plots with fertile soils correspond to 

plots with farmer-perceived clay soils while only 52 percent of plots with fertile soils correspond 

to plots with farmer-perceived sandy soils. Distinctions among soil textures, thus, appear to be 

the main correlates for soil fertility classification in Kenya.  

The picture is somewhat different in Tanzania (Table 5), where we only have objective 

measurements of soil organic carbon, total nitrogen, pH, and CEC from the AfSIS data. While 

farmer-perceived soil type remains the main correlate for the differences in objective 

measurements, plots with better soil quality, as reported by farmers, also have statistically 

significantly higher carbon content and CEC. Average soil organic carbon content on plots with 

good soil quality, for example, is 1.67% w/w versus 1.57% w/w for plots with average soil 

quality and 1.46% w/w for plots with bad soil quality. As the variability between the means is 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
12	
  Fertile soil is defined as soil with organic carbon content greater than or equal to 2% w/w, 
total nitrogen content greater than or equal to 0.2% w/w, and pH greater than or equal to 5.2.	
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relatively small (as it is in Kenya), the bigger sample perhaps increases statistical significance.   

Moving to multivariate analysis so as to ascertain whether the above correlations hold up 

when controlling for plot and household characteristics, the mean marginal effects of the ordered 

probit estimations for Kenya and Tanzania are presented in Table 6. Farmers’ perceptions in 

Kenya do not statistically correspond to the chemical measurements of soil fertility indicators; in 

Tanzania, plots perceived to be good have higher soil organic carbon, supporting Table 5. 

Coefficients on maize yield are statistically significant and positive with good soils and negative 

with bad soils, in both countries. This offers further evidence that farmers’ perceptions of soil 

fertility are correlated with maize yield (similar result seen in Table 4), even when controlling for 

plot and household characteristics; however, the magnitudes of the marginal effects are very 

small. In the case of Kenya, farmers are also less likely to apply chemical fertilizer on plots 

perceived to have higher soil quality and more likely where soil quality is considered low and 

plots owned by the household are perceived to have better soils. In both countries, farmers are 

less likely to report good soils where they report erosion and vice-versa.  

TABLE 6 HERE  

Farmers’ perceptions of soil quality, therefore, seem to be strongly associated with soil 

erosion and, as seen above, farmer-reported yields across the two samples. As indicated above, 

the direction of the soil quality and yield relationship cannot be determined from the data we 

have available. This indeterminate causal relationship may pose endogeneity concerns for the 

estimation of agricultural production or profit functions. Therefore, absent more information or 

an exogenous instrument, one must exercise caution when predicting yields based on farmers’ 

perceptions of soil fertility.  
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Question three: high resolution, publicly available soil data vs. researcher-collected plot-level 

soil data  

We find significant differences at the plot, village, and data set levels between the AfSIS data 

and the plot-level soil analysis data in Kenya. By construction, the AfSIS data show less 

variation than the soil analysis data; they also suggest different summary statistics than the soil 

analysis data. Table 7 displays the correlation coefficients for the two data sets. While many 

coefficients are statistically significant (P<0.05), they are only high for the two stable indicators 

of soil fertility (0.68 for soil pH and 0.55 for soil CEC). For the two indicators that can vary over 

time due to both exogenous factors and endogenous management decisions, organic carbon and 

total nitrogen, we see much lower correlation between the two data sets. The higher correlation 

between the stable indicators and the lower correlation between the indicators subject to change 

over time is as we would expect for the full data set.  

TABLE 7 HERE  

The correlation pattern is also readily observed graphically (Figure 2). The AfSIS data 

track the soil analysis data, with the soil analysis data showing more variation overall. However, 

the differences are significant enough to reject most (52 of 64) t-tests of the equivalence of 

means between the two data sets at the data set and village levels (Table 8). The notable 

exceptions are again the more stable soil fertility indicators—soil pH and CEC—where, in each 

case, four of 16 t-tests show that the equivalence of means cannot be rejected. The differences 

observed across the two data sets in terms of average soil organic carbon and total nitrogen 

content at both the village and data set level may be partially explained by the differences in 

sampling periods, as these soil characteristics are subject to change. However, pH and CEC, 
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more stable indicators of soil fertility, are also different for 13 and 12 (out of 15), respectively, 

villages in the survey and across the full sample for soil pH. The only metric not statistically 

distinguishable between data sets at the full sample level is CEC.  

FIGURE 2 HERE, TABLE 8 HERE  

When comparing the analyses involving the Kenya data, the AfSIS and soil analysis data 

do exhibit similar patterns when broken down by subjective soil quality and type measures 

(Tables 5 and A3). We find in both the AfSIS and soil analysis data statistically significant 

differences in soil type (texture) by soil chemistry. However, in moving from the general pattern 

to the details of the analysis, we again find serious differences between the AfSIS and soil 

analysis data. In particular, the difference in CEC by soil texture is not observed in the AfSIS 

data, and the statistically significant discernments of soil texture by soil chemistry differ between 

the two data sets.  

We conclude that these statistically significant differences at the plot, village, and data set 

levels justify collection of plot-level soil data for laboratory analysis despite the availability of 

AfSIS data when precise plot-level soil data are important for the analysis at hand (e.g., 

providing context-specific recommendations to farmers) and especially when the soil chemistry 

is subject to change over time and with farmer investment (i.e., organic carbon and nitrogen).  

Question four: role of soil information  

Finally, we consider the role of soil fertility information in a production function framework. 

Table 9 and Table A4 in the Appendix show the results of Cobb-Douglas and generalized 

quadratic maize production functions for Kenya and Tanzania. The first and fifth columns of the 
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two tables show estimated coefficients of specifications without any soil information. The 

subsequent columns represent the same basic model but add soil information: first farmer 

reported soil data, then, in the case of Kenya only, the plot-level soil analysis data (soil organic 

carbon and CEC), and then AfSIS data (soil organic carbon and CEC). We examine the role of 

the soil information in three ways: we assess whether and to what extent inclusion/exclusion of 

the different types of data produce (1) changes in the magnitude and significance of coefficients 

when soil variables are included, (2) changes in the average of predicted maize yield, and (3) 

changes in predicted marginal physical products (MPP) of fertilizer.  

TABLE 9 HERE  

In the Cobb-Douglas model, the coefficients on two input variables (labor and chemical 

fertilizer, normalized by land area) are positive, statistically significant, and stable across all 

specifications. The relative magnitudes and significance levels of the control variables (not 

shown but available by request) are similarly unchanged. The addition of soil variables does not 

alter the magnitude of the coefficients on the input variables considerably or increase the models’ 

fit, as represented by the R-squared values. The mean and standard deviation of the predicted 

maize yields and of the calculated marginal physical products of fertilizer, conditional on use, are 

reported in the bottom two rows for all specifications. In neither Kenya nor Tanzania does 

including soil information of any type change the mean of predicted yields or the magnitude of 

the standard deviations. The quadratic specification (Table A4 in the Appendix) tells the same 

story, with the difference that there are no longer any statistically significant coefficients for 

Kenya—a consequence of the smaller sample size of this data set and greater dimensionality 

demands of the quadratic specification. A very similar story holds for the estimated average MPP 

of chemical fertilizer, using the Cobb-Douglas specification, across both data sets. Differences in 
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estimated MPP values are better observed in Figure 3, where the distribution within Kenya is 

explored for each model. The left panel shows the MPPs across the four specifications with 

control variables at the maize plot level across the Kenya data set, while the right panel zooms in 

on three villages in the Mid Yala region (20 percent of the sample). For low values of MPP (less 

than five kilograms per hectare), the plot-specific MPP is nearly the same across the models; for 

higher values of MPP, however, the MPP calculated with different soil information differs, with 

farmers’ perceptions increasing the MPP of fertilizer relative to the MPPs calculated with other 

sources of soil information. 

FIGURE 3 HERE 

The caveats to this discussion are considerable, however. Estimation of the production 

function offers regression to the mean. While most soil fertility indicators (objective and 

subjective) are positive and statistically significant for both Kenya and Tanzania, they are small 

in magnitude and in Kenya correspond to soils with relatively low empirical variation. Therefore, 

the addition of any soil variables is unlikely to result in vast differences in estimates derived 

from the underlying models, at least with the methods currently employed and when analyzed in 

similar contexts (good soils, low empirical variation, and when prediction focuses on sample 

averages). In addition, we do not observe variation across time, and are unable to control for 

other sources of unobserved household or plot-level heterogeneity that could bias our estimates. 

It is, therefore, conceivable that we could find statistically significant differences in estimated 

coefficients, yields, or MPPs under somewhat different circumstances. Finally, the role of 

measurement error in these estimates may be non-trivial: for example, the data on yields is 

gathered via recall and not direct measurement and we combine all chemical fertilizer together, 

instead of separating by type or nutrient.  
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What we can conclude, however, is that when the focus is on specific plots or 

households, having detailed and accurate soil data still matters. Using data from western Kenya 

that display a greater degree of soil fertility variation,13 Marenya and Barrett (2009b), for 

example, find that crop production functions can exhibit von Liebig-type responses. Maize yield 

response to nitrogen fertilizer in their data depends on the state of soil fertility, and below some 

threshold the input applications are not profitable.  

While the soil data did not significantly change the estimated coefficients or the R-

squared values of maize production functions in our two data sets, our results do not suggest that 

there is not a place for fine-grained soil data in agricultural research. First, by including soil 

information we decrease the omitted variable bias. Second, soil information changes the plot-

level values of MPP of fertilizer. Moreover, the fine-grained detail provided in plot-level soil 

analysis data is needed to perform mechanistic and processes-based research at the plot or 

individual farm scales, whereas high spatial resolution estimated soil data, such as that provided 

by AfSIS, may be sufficient to meet the needs of those researchers interested in production 

functions on the country-wide or regional scales. And while farmers’ perceptions or 

misperceptions of soil fertility may not alter all the conclusions of a production function analysis, 

this information can be incredibly informative to extension efforts that seek to identify and 

correct information gaps.  

Conclusion  

With a renewed appreciation for soil fertility in the international development community, 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
13	
  Farms in this data set are sampled based on plot age (time since conversion from forest to 
agriculture) to capture cultivation time and, therefore, the degree of soil fertility degradation.  
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particularly in Sub-Saharan Africa, this paper takes stock of the types of soil information 

currently available to researchers, using data from east Africa. In summary, we find that farmers’ 

perceptions of soil fertility are more correlated with maize yields than with agricultural inputs 

and that these correlations hold up even when we control for plot and household characteristics. 

Farmers either base their soil quality perceptions on the yield from their maize fields or report 

obtaining greater yields from plots they believe to have good soil quality. Other than herbicides 

and pesticides in Kenya (greater application on good plots) and chemical fertilizers in Tanzania 

(greater application on bad plots), farmers are not responding to perceived soil quality with more 

or fewer inputs. We find few observable plot and household level characteristics that are 

correlated with soils assessment. In addition, our results suggest that the AfSIS data may be 

useful to the researcher who is interested in relatively stable soil fertility indicators—soil pH and 

CEC—at an aggregate scale; however, we find enough statistically significant differences at the 

plot, village, and data set levels to justify collection of plot-level soil data for laboratory analysis 

when precise plot-level soil data are important for the analysis at hand (e.g., providing context-

specific recommendations to farmers) and especially when the soil chemistry is subject to change 

over time and with farmer investment (i.e., organic carbon and nitrogen). At the same time, the 

role of soil information in the estimation of simple agricultural production functions appears 

limited when focusing on average yields or the marginal productivity of particular inputs and 

when performing the analysis in a setting with good soils and low empirical variation.  

Overall, we conclude that we have much more to learn about farmers’ subjective soil 

fertility assessments and we caution against using these assessments analytically (as not to 

introduce endogeneity) when more objective metrics, especially plot level soil samples, are 

available. But we should not stop asking these questions of farmers either. Our analysis has also 
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only considered cross-sectional evidence and described statistical associations. However, given 

that farmers’ perceptions can be learned and that even objective measures vary over time, 

particularly when and where nutrients are not added back to the soil, a dynamic analysis of any 

of these correlations could provide even more utility to our disciplines.  

Moreover, we cannot exclusively rely on single experiment data or small samples to 

answer questions about the how farmers make judgments about their soil fertility. We need a 

major research effort to understand how farmers value and use soil information. In addition, 

there is continued need for survey modules that dig deeper into how subjective soil fertility 

perceptions are formed. Investments should be simultaneously made in (1) understanding the 

actual learning process farmers use to arrive at their soil fertility distinctions and (2) educating 

and informing farmers about soil fertility and helping them make their input and other 

management decisions using this knowledge. From the policy makers’ stand point, there is need 

to invest in development of efforts that map soil fertility with more accuracy and in 

dissemination and use of these data by extension agents and agricultural practitioners, so that 

farmers and those interacting with them have the most accurate soil information possible. As 

time goes on, we hope to see a better convergence of farmer knowledge with objective soil 

fertility metrics, more reliable soil information data sets, and more personalized extension 

services and systems. 

Additionally, questions remain about whether information on soil fertility would alter 

farmers’ behavior in terms of inputs and cropping decisions. In other words, is soil information a 

limiting constraint to farm management in Sub-Saharan Africa? Investigation into such a 

question will also enable us to study what farmers do with soil knowledge— does it help 

improve their farm decisions and, ultimately, yields and welfare measures? Or are farm 
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management decisions informed via some other process? Experimental or quasi-experimental 

studies, for example, could include a soil chemistry information treatment to assess farmers’ 

willingness to pay for objective soil information and subsequent collection of panel data could 

help track changes (if any) in farmers’ input and cropping decisions. Such studies could help 

identify the causal linkages between farmers’ perceptions, their management practices, and 

actual soil fertility to start addressing soil and human poverty dynamics.  
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Tables 

TABLE 1. Summary of data 
        

           

Dataset  
In-text 
disam- 

biguation 
Source Location Years 

covered 

Number 
of 

obser- 
vations 

(plot 
level) 

Number of 
obser- 
vations 

(household 
level) 

Nationally 
represen- 

tative 

Type of 
data 

Analysis 
method 

Sample 
weights 

Tanzania 
National 

Panel 
Survey 

Tanzania 
survey 

data 

World 
Bank 

LSMS-
ISA 

Tanzania 2010-
2011 2,360 1,566 yes 

household 
& plot 
level 

survey 

NA yes 

Economics 
of Biomass 

Management 
in Western 

Kenya 

Kenya 
survey 

data 

Berazneva 
et al. 

(2016) 

Western 
Kenya  2011 509 307 no 

household 
& plot 
level 

survey 

NA no 

Economics 
of Biomass 

Management 
in Western 

Kenya 

Soil 
analysis 

data 

Berazneva 
et al. 

(2016) 

Western 
Kenya  2011 307 NA no 

soil 
chemistry 

from 
sampled 

soils 

MIR NA 

Soil 
Property 
Maps of 
Africa at 

250m 

AfSIS 
data 

AfSIS, 
Hengl et 
al. (2015) 

African 
continent   NA NA NA 

GIS data 
at 250 
meter 

resolution 

interpolated 
soil 

characteristics 
(obtained via 
MIR) from > 

28,000 
sampling 
locations 
across the 

continent (see 
Hengl et al. 

(2015)) 

NA 
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TABLE 2. Descriptions and interpretations of measured soil chemical fertility metrics 
	
   

	
   	
   	
  Soil 
variable Description Sufficient 

values 
Deficient 

values 
Organic 
carbon (% 
w/w) 

While not a plant nutrient, organic carbon is one of the best 
measures of overall soil fertility and is highly influenced by 
management.  

≥ 2 < 2 

Total 
nitrogen 
(% w/w) 

Nitrogen is a major plant essential nutrient. As most 
nitrogen is held in the organic matter there is high 
colinearity between total nitrogen and organic carbon in the 
soil.  

≥ 0.2 < 0.2 

pH Soil pH controls plant nutrient availability and toxicity. 5.2 – 7.5 <5.2, >7.5 
CEC 
(meq/100g) 

CEC is the measure of a soil to retain and hold nutrients and 
is a indication of soil fertility potential.  < 15 > 15 

 

 

TABLE 3. Cross tabulations of subjective soil quality and type (farmer reported) 
 

           Soil type   
     Sandy   Loam   Clay   Other Total 
Kenya, 509 plots 

      

Soil quality 

Good  19 85 20  --  124 
Average  68 136 50 8 262 
Bad  37 62 18 6 123 
Total 124 283 88 14 509 

Tanzania, 2,360 plots         
  

Soil quality 
Good  180 722 239 11 1,152 
Average  186 732 124 8 1,050 
Bad  56 82 16 4 158 

  Total 422 1,536 379 23 2,360 
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TABLE 4. Question 1: Farmer reported soil data vs. inputs, yield 
    

           
  

Chemical 
fertilizer 

Herbicides, 
pesticides 

Organic 
resources 

Conditional 
fertilizer Maize yield 

  1=yes 1=yes 1=yes kg/ha t/ha 
KENYA 

          Soil quality, mean (st. dev.) 
         Good (n=124) 0.50 (0.50) a 0.19 (0.40) a 0.64 (0.48) a 137.97 (113.24) a 2.07 (1.70) a 

Average (n=262) 0.56 (0.50) a 0.14 (0.34) ab 0.66 (0.48) a 144.08 (136.84) a 1.73 (1.51) ab 
Bad (n=123) 0.55 (0.50) a 0.08 (0.27) b 0.67 (0.47) a 120.37 (127.59) a 1.38 (1.30) b 

           Soil type, mean (st. dev.) 
         Clay (n=88) 0.57 (0.50) ab 0.17 (0.38) a 0.65 (0.48) a 149.49 (119.37) a 1.85 (1.41) ab 

Loam (n=283) 0.60 (0.49) a 0.14 (0.35) a 0.67 (0.47) a 128.07 (125.15) a 1.83 (1.60) a 
Sandy (n=124) 0.42 (0.50) b 0.10 (0.30) a 0.64 (0.48) a 149.45 (154.40) a 1.44 (1.45) b 

           TANZANIA 
          Soil quality, mean (st. dev.) 

         Good (n=1152) 0.17 (0.38) a 0.09 (0.29) a 0.15 (0.36) a 146.90 (158.32) a 1.18 (1.35) a 
Average (n=1050) 0.18 (0.38) a 0.09 (0.29) a 0.14 (0.35) a 146.29 (143.73) a 1.11 (1.35) a 
Bad (n=158) 0.26 (0.44) a 0.10 (0.30) a 0.15 (0.35) a 97.04 (96.78) a 0.94 (1.19) a 

           Soil type, mean (st. dev.) 
         Clay (n=379) 0.21 (0.40) a 0.10 (0.30) a 0.10 (0.31) a 129.90 (112.93) a 1.10 (1.34) a 

Loam (n=1536) 0.17 (0.38) a 0.10 (0.29) a 0.15 (0.36) a 147.11 (160.79) a 1.15 (1.33) a 
Sandy (n=422) 0.20 (0.40) a 0.07 (0.25) a 0.16 (0.37) a 133.46 (127.32) a 1.01 (1.34) a 

 

Note: Analysis at plot level for 2011-2012 long rains season. 'Other' soil type is excluded. For 
Tanzania, observations are weighted using household sampling weights, and continuous 
variables winsorized at 99th percentile of the raw distribution. Common letters indicate values 
are not statistically different at the 95 % confidence level using a Tukey-Kramer test, e.g., values 
both marked with “a” are not statistically significantly different from each other at the 95% 
confidence level. 
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TABLE 5. Question 2: Farmer reported vs. AfSIS soil data 
     

             Carbon, C Nitrogen, N pH CEC Fertile soil** 
  (% by weight)  (% by weight)  1-7 (meq/100g) =1 

KENYA 
          Soil quality, mean (st. dev.) 

         Good (n=67) 2.24 (0.52) a 0.25 (0.06) a 5.74 (0.26) a 24.42 (7.23) a 0.75 (0.44) a 
Average (n=173) 2.30 (0.52) a 0.24 (0.06) a 5.75 (0.21) a 24.49 (6.79) a 0.73 (0.44) a 
Bad (n=68) 2.27 (0.48) a 0.24 (0.06) a 5.78 (0.23) a 23.35 (6.88) a 0.66 (0.48) a 

           Soil type, mean (st. dev.) 
         Clay (n=57) 2.34 (0.51) a 0.25 (0.06) ab 5.72 (0.21) b 25.79 (6.55) a 0.81 (0.40) a 

Loam (n=166) 2.33 (0.43) a 0.25 (0.06) b 5.73 (0.23) b 23.63 (7.10) a 0.79 (0.41) a 
Sandy (n=75) 2.12 (0.63) b 0.23 (0.07) a 5.82 (0.24) a 24.17 (6.73) a 0.52 (0.50) b 

           TANZANIA 
          Soil quality, mean (st. dev.) 

         Good (n=1152) 1.67 (0.92) a 0.12 (0.06) a 6.12 (0.41) a 14.50 (6.68) a 
  Average (n=1050) 1.57 (0.90) a 0.12 (0.07) a 6.12 (0.44) a 14.32 (6.72) a 
  Bad (n=158) 1.46 (0.75) b 0.12 (0.08) a 6.06 (0.36) a 12.69 (5.63) b 
  

           Soil type, mean (st. dev.) 
         Clay (n=379) 1.80 (0.97) a 0.13 (0.07) a 6.08 (0.38) b 14.48 (6.43) a 

  Loam (n=1536) 1.62 (0.92) b 0.12 (0.07) a 6.15 (0.45) a 14.74 (6.88) a 
  Sandy (n=422) 1.36 (0.71) c 0.11 (0.07) b 6.04 (0.33) b 12.11 (5.35) b     

 

Note: Analysis at plot level for 2011-2012 long rains season. 'Other' soil type is excluded. 
For Tanzania, observations are weighted using household sampling weights, and continuous 
variables winsorized at 99th percentile of the raw distribution. Common letters indicate values 
are not statistically different at the 95 % confidence level using a Tukey-Kramer test, e.g., values 
both marked with “a” are not statistically significantly different from each other at the 95% 
confidence level. 
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TABLE 6: Question 2: Factors affecting farmers’ soil fertility perceptions (marginal effects) 

       Kenya Tanzania 

 
(1) (2) (3) (4) 

VARIABLES  Bad soil Good soil Bad soil Good soil 

     Soil organic carbon (% w/w) 0.0292 -0.0287 -0.0139*** 0.0439*** 

 
(0.0501) (0.0493) (0.00411) (0.0126) 

Soil CEC (meq/100g) -0.00260 0.00256 -0.000304 0.000958 

 
(0.00399) (0.00394) (0.000519) (0.00163) 

Maize grain yield (kg/ha) -0.0000499*** 0.0000491*** -0.00000553** 0.0000174** 

 
(0.0000153) (0.0000147) (0.00000234) (0.00000727) 

Chemical fertilizer: 1=yes 0.132*** -0.130*** 0.00794 -0.0250 

 
(0.0487) (0.0479) (0.00851) (0.0267) 

Herbicides, pesticides: 1=yes -0.0591 0.0582 -0.00565 0.0178 

 
(0.0613) (0.0603) (0.0110) (0.0347) 

Organic resources: 1=yes 0.0438 -0.0431 -0.00615 0.0193 

 
(0.0408) (0.0401) (0.00892) (0.0280) 

Improved seeds: 1=yes 0.0391 -0.0385 -0.0119 0.0375 

 
(0.0559) (0.0551) (0.00989) (0.0310) 

Plot size (ha) 0.00444 -0.00436 -0.00165 0.00518 

 
(0.0123) (0.0122) (0.00162) (0.00510) 

Own plot: 1=yes -0.161* 0.158* 0.00795 -0.0250 

 
(0.0895) (0.0889) (0.00956) (0.0300) 

Soil erosion: 1=yes 0.0779* -0.0767* 0.0229*** -0.0722*** 

 
(0.0401) (0.0395) (0.00855) (0.0265) 

Slope: 1=gentle -0.0186 0.0182 -0.00634 0.0200 

 
(0.0395) (0.0386) (0.00664) (0.0209) 

Slope: 1=steep -0.0499 0.0533 0.0131 -0.0412 

 
(0.118) (0.142) (0.0159) (0.0499) 

Distance from home (m) -0.0000107 0.0000106 -0.000000162 0.000000509 

 
(0.0000474) (0.0000467) (0.000000141) (0.000000443) 

Plot altitude (m) -0.0000563 0.0000554 0.0000366*** -0.000115*** 

 
(0.0000827) (0.0000814) (0.00000713) (0.0000210) 

Intercropped: 1=yes -0.00584 0.00575 0.00464 -0.0146 

 
(0.0459) (0.0452) (0.00623) (0.0196) 

Household head female: 1=yes 0.0338 -0.0333 -0.0106 0.0333 

 
(0.0536) (0.0527) (0.00756) (0.0237) 

Household head age 0.000532 -0.000524 0.0000703 -0.000221 

 
(0.00134) (0.00132) (0.000225) (0.000707) 

Household head years of education -0.00151 0.00149 
  

 
(0.00473) (0.00466) 

  HH education: 1=some primary or adult 
  

0.00280 -0.00880 

   
(0.00906) (0.0285) 

HH education: 1=completed primary 
  

0.0114 -0.0358 

   
(0.00841) (0.0264) 
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HH education: 1=more than primary  
  

-0.0221 0.0694 

   
(0.0142) (0.0443) 

Household size (adult equivalents) -0.00621 0.00611 0.00192 -0.00604 

 
(0.00822) (0.00809) (0.00141) (0.00442) 

Herd size (TLU) -0.00197 0.00194 -0.000834 0.00263 

 
(0.00756) (0.00744) (0.000540) (0.00169) 

Crop income (USD) 
  

-0.0000139 0.0000438 

   
(0.0000104) (0.0000326) 

Observations 307 307 2,360 2,360 
 

Note: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. First column in each 
category captures the mean marginal effect of each variable on the farmer reporting bad soil; 
the second column captures the mean marginal effect on the farmer reporting farmer reporting 
good soil. Soil variables are from AfSIS. 
 

 

TABLE 7. Question 3: Pairwise correlation coefficients between soil analysis and AfSIS data for the 
four soil characteristics in Kenya 

              Soil analysis data AfSIS data 
    C N pH CEC C N pH  CEC 

          
Soil analysis 

data 

C 1.00 
       N 0.96* 1.00 

      pH 0.13 0.07 1.00 
     CEC 0.80* 0.75* 0.43* 1.00         

          

AfSIS data 

C 0.30* 0.23* -0.48* 0.06 1.00 
   N 0.37* 0.29* -0.29* 0.25* 0.82* 1.00 

  pH 0.11 0.10 0.68* 0.33* -0.47* -0.35* 1.00 
 CEC 0.47* 0.37* 0.26* 0.55* 0.39* 0.58* 0.31* 1.00 

 

Note: Bonferroni-adjusted significance levels of 0.05 or less. N=307 maize plots. 
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TABLE 8. Question 3: Test of equivalence of means between soil analysis and AfSIS data in Kenya 
  

          
  

    Soil organic carbon Soil nitrogen 
content Soil pH Soil CEC   

Village Obs t-stat p-value t-stat p-value t-stat p-value t-stat p-value   

            Bumira B 21 8.49 0.00 21.77 0.00 6.09 0.00 14.98 0.00   
Chamakanga 20 18.68 0.00 45.08 0.00 0.99 0.34 56.53 0.00   
Chepkitin B 21 6.41 0.00 13.57 0.00 4.05 0.00 14.61 0.00   
Jeveleli 21 3.22 0.00 8.58 0.00 4.74 0.00 18.28 0.00   
Kagai 21 -1.82 0.08 2.94 0.01 -5.34 0.00 -2.46 0.02   
Kanyibana A 17 -4.38 0.00 3.01 0.01 -10.62 0.00 -6.69 0.00   Kanyilaji B 21 6.35 0.00 14.80 0.00 -7.01 0.00 2.26 0.04   
Kasagoma B 21 -3.09 0.01 3.25 0.00 2.36 0.03 -3.52 0.00   
Kures 21 -4.36 0.00 8.98 0.00 -1.88 0.08 -1.99 0.06   
Lelmolok A 20 3.09 0.01 7.94 0.00 2.35 0.03 6.09 0.00   
Nyangera B 21 0.08 0.94 2.67 0.01 -1.96 0.06 0.46 0.65   
Ogwedhi B 20 2.72 0.01 18.41 0.00 -2.60 0.02 4.99 0.00   Ratunwet  21 -6.70 0.00 -2.18 0.04 -6.80 0.00 -3.26 0.00   
Tabet B 21 -0.70 0.49 5.53 0.00 0.38 0.71 0.36 0.72   
Tulwet West 21 -3.78 0.00 1.88 0.07 -3.55 0.00 -3.41 0.00   
All villages 308 -2.24 0.03 15.44 0.00 -2.65 0.01 -0.17 0.87   

 

Note: Highlighted values indicate failure to reject statistical difference between soil analysis and 
AfSIS data. 
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TABLE 9. Question 4: Cobb-Douglas maize production function 

          Kenya Tanzania 

 
(1) (2) (3) (4) (5) (6) (7) 

VARIABLES No soil Farmer 
reported Soil analysis AfSIS No soil Farmer 

reported AfSIS 

LN(Labor (days/ha or 
adult equivalents)) 0.275*** 0.274*** 0.280*** 0.310*** 0.357*** 0.358*** 0.354*** 

 
(0.0807) (0.0786) (0.0777) (0.0801) (0.0202) (0.0203) (0.0202) 

LN(Fertilizer (kg/ha)) 0.0616* 0.0802** 0.0667** 0.0551* 0.112*** 0.112*** 0.114*** 

 
(0.0329) (0.0325) (0.0321) (0.0309) (0.0165) (0.0165) (0.0165) 

Perceived soil quality: 
1=average 

 
0.155 

   
0.0319 

 
  

(0.111) 
   

(0.0949) 
 Perceived soil quality: 

1=good 
 

0.448*** 
   

0.0929 
 

  
(0.149) 

   
(0.0984) 

 Soil carbon (% by 
weight) 

  
0.266*** 0.240 

  
0.091 

   
(0.0775) (0.172) 

  
(0.0683) 

Soil CEC (meq/100g) 
  

-0.0184*** 0.0615* 
  

0.0105 

   
(0.00692) (0.0336) 

  
(0.00947) 

Constant 4.525*** 4.392*** 5.246*** 4.085*** 5.340*** 5.317*** 5.215*** 
  (1.242) (1.224) (1.144) (1.331) (0.323) (0.340) (0.363) 

        Observations 307 307 307 307 2,358 2,358 2,358 
R-squared 0.309 0.333 0.344 0.334 0.377 0.377 0.379 

        
Predicted yield (t/ha) 

1.44 
(0.80) 

1.46 
(0.85) 1.46 (0.83) 

1.45 
(0.82) 

0.80 
(0.70) 

0.80 
(0.70) 

0.80 
(0.70) 

MPP fertilizer (kg/ha) 
conditional on use 

1.85 
(2.44) 

2.41 
(3.17) 2.00 (2.64) 

1.66 
(2.18) 

2.53 
(6.20) 

2.53 
(6.17) 

2.57 
(6.28) 

 

Note: Dependent variable = LN(Maize yield (kg/ha)). Other variables include plot altitude (m), 
herd size (TLU), female household head, household head age and education, indicator variables 
for intercropping, use of improved seeds, use of herbicides or pesticides, use of organic 
resources, plot ownership, soil erosion, plot slope, distance from home (m), household size (adult 
equivalents) for Kenya, and geographic controls (block dummies for Kenya and enumeration 
area and district dummies for Tanzania). Robust standard errors in parentheses. *** p<0.01, ** 
p<0.05, * p<0.1. In Kenya, estimation includes only plots with measured soil data. In Tanzania, 
estimation includes household-level sampling weights. 
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Figures 

FIGURE 1. AfSIS soil pH with the Kenyan soil analysis study households represented by circles. 
X and Y-axes are latitude and longitude in UTM WGS84 
 

 
 
 
FIGURE 2. Question 3: Soil analysis vs. AfSIS data by plot across the four soil characteristics in 
Kenya: organic carbon, total nitrogen, pH, and CEC 
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FIGURE 3. Question 4: Increase in maize yield in response to one additional kilogram of 
fertilizer (estimated MPP of fertilizer) after the Cobb-Douglas production function with no soil 
variables, farmers’ perceptions, soil analysis, and AfSIS soil variables for all plots in the Kenya 
data set and for plots in the three villages in Mid Yala 
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Appendix 

Table A1 shows summary statistics for the data used in our estimation.  

Table A2 reports the variation between good, average, and bad perceived soil quality 

within and between plots, households, and villages in Kenya and enumeration areas (EAs) in 

Tanzania. The first panel of Table A1 indicates the number and percentage of plots that have 

been designated by their farmers as good, average, or bad in Kenya and Tanzania. In Kenya we 

see that little over half (51 percent) of the total plots in the data set are perceived as average 

while there is an even split between good and bad (24 percent each). In Tanzania, nearly half the 

plots are perceived as good (49 percent) and 44 percent are perceived as average. Only seven 

percent are perceived as bad. To better understand the source of the variation in perception, the 

next panels decompose soil quality designation by between and within differences among 

households and villages/EAs. We observe much greater variation within villages/EAs rather than 

within households in both Kenya and Tanzania. For example, of the households that report at 

least one maize plot with good quality in Tanzania, 92 percent of plots within the same 

household are also deemed to have good soil. On the other hand, of the EAs where someone has 

declared their soil as good, 57 percent of plots within that same EA have plots with good soil 

quality. The same applies to the average and bad classifications too.  

 Similar to Table 5, Table A3 displays the multiple pairwise comparisons of farmer-

reported soil quality and type with soil carbon, nitrogen, pH and CEC from the AfSIS soil data. 

Table A4 shows the results of generalized quadratic maize production functions for Kenya and 

Tanzania. 

TABLES A1, A2, A3, A4 HERE 
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TABLE A1. Summary statistics 

         
  Kenya Tanzania 

Variable Mean Std. Dev. Min Max Mean Std. Dev. Min Max 
Household head female: 1=yes 0.19 0.39 0.00 1.00 0.23 0.42 0.00 1.00 
Household head (HH) age 51.29 15.48 20.00 90.00 49.18 15.59 18.00 98.00 
HH years of education 6.73 4.54 0.00 18.00 

    HH education: 1=none 
    

0.27 0.45 0.00 1.00 
HH education: 1=some primary 
or adult 

    
0.20 0.40 0.00 1.00 

HH education: 1=completed 
primary 

    
0.46 0.50 0.00 1.00 

HH education: 1=more than 
primary  

    
0.07 0.25 0.00 1.00 

Household size (adult 
equivalents) 6.02 2.44 1.00 13.00 4.70 2.61 0.72 26.32 
Crop income (USD) 

    
266 316 -1,312 2,040 

Maize grain yield (kg/ha) 1,771 1,411 22 8,343 1,070 1,304 0 5,471 
Herd size (TLU) 2.35 2.74 0.00 17.66 2.38 6.38 0.00 39.00 
Own plot: 1=yes 0.95 0.21 0.00 1.00 0.88 0.32 0.00 1.00 
Soil erosion: 1=yes 0.45 0.50 0.00 1.00 0.14 0.35 0.00 1.00 
Slope: 1=flat 0.49 0.50 0.00 1.00 0.63 0.48 0.00 1.00 
Slope: 1=gentle 0.49 0.50 0.00 1.00 0.33 0.47 0.00 1.00 
Slope: 1=steep 0.02 0.15 0.00 1.00 0.04 0.20 0.00 1.00 
Plot altitude (m) 1,605 328 1,209 2,254 1,041 522 8 2,164 
Distance from home (m) 121 432 5 6,292 4,756 22,208 0 550,000 
Plot size (ha) 1.92 1.86 0.05 14.35 1.23 2.36 0.00 39.26 
Intercropped: 1=yes 0.76 0.43 0.00 1.00 1.35 0.48 1.00 2.00 
Chemical fertilizer: 1=yes 0.59 0.49 0.00 1.00 0.19 0.39 0.00 1.00 
Organic resources: 1=yes 0.66 0.47 0.00 1.00 0.13 0.34 0.00 1.00 
Herbicides, pesticides: 1=yes 0.13 0.34 0.00 1.00 0.09 0.29 0.00 1.00 
Improved seeds: 1=yes 0.61 0.49 0.00 1.00 0.11 0.31 0.00 1.00 
Perceived soil quality: 1=bad 0.22 0.42 0.00 1.00 0.07 0.25 0.00 1.00 
Perceived soil quality: 
1=average 0.56 0.50 0.00 1.00 0.44 0.50 0.00 1.00 
Perceived soil quality: 1=good 0.22 0.41 0.00 1.00 0.49 0.50 0.00 1.00 
Perceived soil type: 1=sandy 0.24 0.43 0.00 1.00 0.18 0.38 0.00 1.00 
Perceived soil type: 1=loam 0.54 0.50 0.00 1.00 0.65 0.48 0.00 1.00 
Perceived soil type: 1=clay 0.19 0.39 0.00 1.00 0.16 0.37 0.00 1.00 
AfSIS: Soil carbon (% by 
weight) 2.28 0.51 0.85 3.45 1.59 0.89 0.54 5.53 
AfSIS: Soil total nitrogen  (% by 
weight) 0.24 0.06 0.11 0.39 0.12 0.06 0.03 0.47 
AfSIS: Soil CEC (meq/100g) 24.21 6.91 14.00 34.00 13.67 6.34 5.38 40.48 
AfSIS: Soil pH (1-7) 5.75 0.23 5.40 6.60 6.09 0.41 5.05 8.14 
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Soil analysis: Soil carbon (% by 
weight) 2.43 1.23 0.83 9.05 

    Soil analysis: Soil total nitrogen 
(% by weight) 0.16 0.09 0.06 0.87 

    Soil analysis: Soil CEC 
(meq/100g) 24.33 15.20 6.33 100.37 

    Soil analysis: Soil pH (1-7) 5.81 0.52 4.35 7.09         
 

Note: N = 307 plots in Kenya and 2,360 plots in Tanzania. Maize plot is the land area under 
maize cultivation (including the area where maize is intercropped with legumes); 1 TLU is 
equivalent to 250 kg of animal body mass (0.7 cattle or 0.1 sheep/goat). 
 

TABLE A2. Within vs. between variation in subjective soil quality (farmer reported): Household and 
village for Kenya and household and enumeration area (EA) for Tanzania 

	
   	
   	
   	
   	
   	
   	
   	
   	
    Plots Households Villages/EAs 
Soil quality   Number  %    Number  % between   % within    Number  % between    % within  

         Kenya: 312 households, 15 villages 
     Good  124 24 98 32 75 15 100 25 

Average  262 51 201 64 85 15 100 51 
Bad  123 24 91 29 75 15 100 24 
Total  509 100 390 125 80 45 400 33 

         Tanzania: 1,566 households, 292 EAs 
     Good  1,152 49 839 54 92 258 88 57 

Average  1,050 44 764 49 91 258 88 57 
Bad  158 7 126 8 81 93 32 23 
Total  2,360 100 1,729 110 91 592 203 49 

 

Note: There are 1.63 maize plots per average household and 33.93 maize plots per average 
village in Kenya. There are 1.51 maize plots per average household and 8.08 maize plots per 
average enumeration area in Tanzania. 
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TABLE A3. Kenya: Farmer reported vs. plot-level soil analysis data 
     

             Carbon, C Nitrogen, N pH CEC Fertile soil** 
  (% by weight)  (% by weight)  1-7 (meq/100g) =1 

           Soil quality, mean (st. dev.) 
        

a 
Good (n=67) 2.56 (1.54) a 0.17 (0.12) a 5.85 (0.54) a 25.26 (18.56) a 0.22 (0.42) a 
Average (n=173) 2.42 (1.19) a 0.16 (0.08) a 5.81 (0.49) a 24.29 (14.13) a 0.19 (0.39) a 
Bad (n=68) 2.32 (0.98) a 0.15 (0.06) a 5.78 (0.54) a 23.59 (14.24) a 0.18 (0.38) 

 
           Soil type, mean (st. dev.) 

         Clay (n=57) 2.86 (1.41) b 0.19 (0.09) a 5.90 (0.50) a 30.65 (18.23) b 0.40 (0.49) a 
Loam (n=166) 2.34 (1.04) a 0.16 (0.08) ab 5.68 (0.49) b 21.89 (14.28) a 0.16 (0.36) a 
Sandy (n=75) 2.27 (1.41) a 0.15 (0.09) b 6.02 (0.50) a 24.23 (12.72) a 0.12 (0.33) b 

 

Notes: Analysis at plot level for 2011-2012 long rains season. 'Other' soil type is excluded. 
Common letters indicate values are not statistically different at the 95 % confidence level using a 
Tukey-Kramer test, e.g., values both marked with “a” are not statistically significantly different 
from each other at the 95% confidence level. 
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TABLE A4. Quadratic maize production function 
	
  
	
  

	
   	
   	
   	
   	
   	
   	
    Kenya Tanzania 

	
  
(1) (2) (3) (4) (5) (6) (7) 

VARIABLES No soil Farmer 
reported 

Soil 
analysis AfSIS No soil Farmer 

reported AfSIS 

Labor (days/ha or 
adult equivalents) 1.999 2.218 1.396 3.264 11.03*** 11.06*** 7.902*** 

 
(1.794) (1.761) (1.855) (2.985) (1.220) (1.223) (2.003) 

Fertilizer (kg/ha) -0.310 0.357 0.379 -0.573 3.165*** 3.165*** 3.544*** 

 
(2.393) (2.334) (3.378) (9.216) (0.942) (0.941) (1.294) 

1/2 Labor sq. -0.00208 -0.00294 -0.00250 -0.00325 -0.0108*** -0.0108*** -0.00960*** 

 
(0.00529) (0.00517) (0.00503) (0.00486) (0.00153) (0.00153) (0.00142) 

1/2 Fertilizer sq. 0.00609 0.00256 0.00943 0.00634 0.000306 0.000302 -0.000754 

 
(0.00882) (0.00863) (0.0104) (0.00774) (0.00363) (0.00363) (0.00374) 

Labor * Fertilizer 0.00431 0.00546 0.00412 0.00290 -0.00536*** -0.00545*** -0.00493** 

 
(0.00577) (0.00556) (0.00561) (0.00554) (0.00146) (0.00147) (0.00223) 

Perceived soil 
quality: 1=average  241.6*    6.706  

 
 (145.5)    (99.94)  

Perceived soil 
quality: 1=good  807.9***    50.98  

 
 (221.0)    (106.1)  

Soil carbon (% by 
weight)   318.6 2026.2   322.8 

 
  (262.5) (1448.4)   (224.3) 

Soil CEC 
(meq/100g)   -18.23 243.6   20.57 

 
  (30.39) (286.5)   (38.86) 

1/2 Soil carbon sq.   -282.1** 370.1   -221.2** 

 
  (112.8) (879.8)   (112.3) 

1/2 Soil CEC sq.   -1.413 2.858   -3.215 

 
  (0.984) (11.95)   (2.358) 

Labor * Soil carbon   1.223* 1.283   -1.076 

 
  (0.645) (1.173)   (0.841) 

Labor * Soil CEC   -0.0835 -0.153*   0.342 

 
  (0.0513) (0.0883)   (0.214) 

Fertilizer * Soil 
carbon   -1.776 0.643   0.0627 

 
  (1.752) (3.687)   (0.537) 

Fertilizer * Soil 
CEC   0.138 -0.0513   -0.0216 

 
  (0.143) (0.145)   (0.0795) 

Soil carbon * Soil 
CEC   19.65** -118.3**   22.06 

 
  (7.677) (57.61)   (15.09) 
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Constant 1010.5 610.1 2448.7* -4446.4 69.12 29.83 6.212 
  (1271.4) (1256.2) (1395.6) (3686.9) (517.4) (527.0) (688.2) 

 
       

Observations 307 307 307 307 2,358 2,358 2,358 
R-squared 0.331 0.367 0.370 0.370 0.321 0.322 0.329 

        Predicted yield 
(t/ha) 1.77 (0.81) 1.77 (0.85) 1.77 (0.86) 

1.77 
(0.86) 1.13 (0.75) 1.13 (0.75) 1.13 (0.76) 

MPP fertilizer 
(kg/ha) conditional 
on use 1.32 (1.08) 1.70 (0.91) 1.28 (1.72) 

1.14 
(1.07) 3.10 (0.36) 3.10 (0.37) 3.18 (0.42) 

 

Note: Dependent variable = Maize yield (kg/ha). Other variables include plot altitude (m), herd 
size (TLU), female household head, household head age and education, indicator variables for 
intercropping, use of improved seeds, use of herbicides or pesticides, use of organic resources, 
plot ownership, soil erosion, plot slope, distance from home (m), household size (adult 
equivalents) for Kenya, and geographic controls (block dummies for Kenya and enumeration 
area and district dummies for Tanzania). Robust standard errors in parentheses. *** p<0.01, ** 
p<0.05, * p<0.1. In Kenya, estimation includes only plots with measured soil data. In Tanzania, 
estimation includes household-level sampling weights. 
 


